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Abstract 

In this study, tubular microbial fuel cells (MFCs) were inserted into phenanthrene-

contaminated water-logged soil in order to evaluate their treatment efficiency and overall 

system performance within 60 days’ incubation period. At day 10, phenanthrene 

degradation rates were found to decrease with increasing distance from the anodes from 

50-55 % at 2 cm to 38-40 % at 8 cm. Bromate (used as a catholyte) removal in both 

MFCs was about 80-95 % on average which is significantly higher than the open circuit 

controls (15-40 %) over the 60day period. Total chemical oxygen demand removal (72.8 

%) in MFCs amended with surfactants was significantly higher than MFCs without 

surfactant (20 %). This suggests that surfactant addition may have enhanced 

bioavailability of not only phenanthrene, but other organic matter present in the soil. The 

outcomes of this work has demonstrated the simultaneous removal of phenanthrene 

(86%) and bromate (95%) coupled with concomitant bioelectricity generation (about 4.69 

mWm-2) using MFC systems within a radius of influence (ROI) up to 8 cm. MFC 

technology may be used for in situ decontamination of soils due to its potential 

detoxification capacity and could be deployed directly as a prototype-MFC design in field 

applications. 

1.0. Introduction 

Increasing global demand for petroleum hydrocarbons and its products is often 
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associated with soil contamination resulting from waste disposal and leakage from 

storage tanks or during its transportation from one point to another. Petroleum 

hydrocarbons are known to adversely affect human health and render soils hazardous 

through contamination with BTEX and PAH compounds (Wang et al. [1], Guo and Zhou 

[2], Sarkar et al. [3], Zhou et al. [4]). A recent report on oil contamination in Ogoniland 

in Nigeria revealed the benzene and PAHs levels was 1800 and 500 times higher than 

WHO standards respectively. Two spills in Ogoniland required about $30 billion for 

clean-up operations over 30 years (UNEP [5]).The cleanup of these contaminants is 

expensive, especially using physical and chemical methods. The use of biological 

methods such as in situ bioremediation, is a relatively inexpensive, non-intrusive and eco-

friendly methods of treating such contaminants in sediments and soil environments. 

Soil microbial fuel cells (sMFC) are a new technology for remediation of soils 

contaminated with organic compounds without need for any introduction of donor or 

acceptor into the soil or subsurface environment (Morris and Jin [6], Zhang et al. [7]). 

Electrodes in sMFCs can provide a less-expensive and easy passage of electrons from the 

anode to the cathode (which does not corrode over long-term deployment) thus 

stimulating the anaerobic oxidation pollutants (Morris et al. [8], Zhang et al. [7],Wang et 

al. [1]). Moreover, electricity production during MFC operation is an indication of 

substrate biodegradation which can be used to provide energy needed for operating online 

monitoring wireless sensors (Donovan et al. [9]). 

A few studies on bioelectrochemically-assisted soil/sediment bioremediation have 

been reported for phenol (Huang et al. [24]), BTEX compounds (Zhang et al. [7]), 

petroleum hydrocarbons (Morris and Jin [6]) and PAHs (Wang et al. [1]). Morris and Jin 

[6], reported TPH degradation rates in the sediment was about 12 times higher than the 

baseline control. Wang et al. [1] also observed a significant increase in TPH degradation 

(i.e. from 6.9% to 15.2 %) in U-tube like soil MFC, especially water-logged close to the 

anode but a decrease in system performance was observed with increasing distances from 

the anode and decreasing moisture content. Despite the previous studies on petroleum 

hydrocarbon removal using MFC of various configurations, to the best of our knowledge, 

there has been no report that explored the possibility of coupling the use of cathodic 

electron acceptors other than oxygen such as hydrogen peroxide, potassium persulfate 

among others, with petroleum hydrocarbon degradation using a tubular soil MFC 

bioreactor design. Bromate has previously been demonstrated in previous studies 

(Adelaja [10], Adelaja et al. [11]) to be a potential electron acceptor at the cathode in lieu 

of platinum due to the high cost of platinum catalyst and its limited application in 
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subsurface anoxic environments. Bromate, a toxic pollutant, has been reportedly found in 

wastewater treatment effluents, groundwater, stagnant ponds/lakes and the marine 

environment with high chloride ions concentrations (Zhao et al. [12], Bao et al. [13]). 

The radius of influence (ROI), which is a distance at which enhancement of 

biodegradation takes place from the anode, could to a large extent determine the practical 

deployment of MFCs for in situ bio-treatment of oil-contaminated soil. ROI could largely 

depend on MFC architecture, physical and bio-chemical characteristics of both pollutants 

and soil. 

In this study, newly modified column-type MFCs were developed for to facilitate 

phenanthrene degradation (a model PAH compound) in soil by varying phenanthrene 

concentrations relative to the distance from the MFC anodes with concomitant 

bioelectricity production. The effect of surfactant addition on MFC performance was also 

investigated. Influence of changes of soil ionic strength and pH were also monitored in 

order to check their effect on the degradation of phenanthrene. 

2.0. Materials and Methods 

2.1. Chemicals and reagents 

All Chemicals were purchased from Sigma Aldrich (Dorset, UK), Acros (UK) and 

QiaGen Ltd (Crawley, UK). HPLC Grade solvent reagents including Methanol, 

Acetonitrile (ACN), already prepared COD reagent (Ficodox Plus™) used was gotten 

from Fisher Scientific (Loughborough, UK). No further purification was done on 

chemicals prior to use and reagents employed for this work were of analytical grade 

(≥99.98 % purity). 

2.2. Soil sample collection and characterization 

Contaminated soil samples used for soil MFC studies were obtained from Barking, 

London, UK with a known history of petroleum hydrocarbon contamination. Soil auger 

was used to collect soil samples at the above location from 5 to 10 cm beneath the soil 

top layer surface. The soil was collected in airtight plastic bags, transported directly to the 

lab, spread to dry at ambient temperature for 72hrs (25 ± 3℃) and the debris of 

plant/animal origin and clay-like materials were removed by sieving with 2mm sieve and 

clayey material. The samples were thereafter stored at 4℃ prior use.  A complete 

physicochemical analysis of the aliquots sample of the soil was carried out by Forest 

Research, Surrey, UK. The original soil used is a sandy loam soil with a background 
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phenanthrene levels of 1.950 mgkg

analysis of the soil sample is described in the supplementary information.

2.3. Reactor design and set

The soil MFCs were tubular

tubes with one sealed end as 

Figure 1. The schematic diagram of the tubular soil MFC reactor experimental set up 

employed for treating a model PAH

The inner chamber of the 0.5 cm thick PVC tube (4.5 cm diameter x 40 cm length) 

made up the cathode chamber (with operating volume of 200 mL) while the anode was 

fastened firmly onto the outer section of the PVC tube (which had evenly distributed 

holes of 1 cm diameter) using plastic cable ties, thus leaving the anode side exposed to 

the hydrocarbon-contaminated waterlogged soil. The evenly distributed holes on the

tube allowed cation exchange

membrane, CMI-7000 (Membranes International, USA). The cathode chamber was filled 

with the catholyte potassium bromate solution (1000 mg L
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phenanthrene levels of 1.950 mgkg-1 DS (dry soil). The main physiochemical and mineral 

analysis of the soil sample is described in the supplementary information. 

nd set-up for tubular soil MFCs 

The soil MFCs were tubular-like MFC reactors which were constructed using PVC 

tubes with one sealed end as shown in Figure 1.  

The schematic diagram of the tubular soil MFC reactor experimental set up 

r treating a model PAH-contaminated soil. 

inner chamber of the 0.5 cm thick PVC tube (4.5 cm diameter x 40 cm length) 

made up the cathode chamber (with operating volume of 200 mL) while the anode was 

fastened firmly onto the outer section of the PVC tube (which had evenly distributed 

m diameter) using plastic cable ties, thus leaving the anode side exposed to 

contaminated waterlogged soil. The evenly distributed holes on the

exchange between the anode and the cathode with a cation exchange 

7000 (Membranes International, USA). The cathode chamber was filled 

with the catholyte potassium bromate solution (1000 mg L-1 at pH 5), and sterile 
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deionized water was added to the cathode camber at intervals to make up for water loss 

due to evaporation. The soil MFC was embedded MFCs in a rectangular PVC storage 

container (18 cm x 7.6 cm x 20 cm) containing approximately 15 kg of waterlogged soil 

immersed in 2 cm of deionized water above the soil. 

Carbon felt was used as both anode and cathode in the experiment (C-TEX 27; Mast 

Carbon Inc, Basingstoke, UK) with estimated surface area of 156 cm2 and 96 cm2 

(measured) respectively. All electrical connections were insulated and subsequently 

coated will a silicone rubber in order to prevent system short circuit and corrosion due to 

immersion in aqueous medium. External load of 1000 Ω was connected to the MFC and  

the MFC was incubated at ambient temperature (25 ± 5℃) for 60 days and protected 

from sunlight.  

Voltage outputs from the MFCs were monitored in real-time using a data acquisition 

system (Picolog ADC-24, Pico Technology, UK) which captured voltage outputs every 

10 mins throughout the experiments. Water lost via evaporation and during samples 

collections was duly made up by sterile deionized water at intervals (2-3 days) to 

maintain the saturated condition. 

2.4. Experimental design 

In this study, four tubular MFC units (of same design) with two units each installed 

on two similar rectangular PVC storage containers was used in the experiment setup. In 

one of the storage containers, the two units installed were different tests (one with 

surfactant, MFC+S and the other without surfactant, MFC-S) while the other two in the 

second storage container, were two sets of open-circuit MFC controls each for MFC+S 

and MFC-S respectively. 

Two non-MFC (or anaerobic) reactors were used as baseline controls; one with 

surfactant, E+S and the other without surfactant, F-S. These reactors were operated as 

previously described in Section 2.2. The original soil (previously described in Section 

2.1) was spiked with phenanthrene and manually homogenised using an iron paddle to a 

final phenanthrene concentration of 1000 mg kg-1 dry soil. Prior to MFC operations, the 

spiked soils in each storage container were incubated for 14 days for partial aging and 

enrichment of the indigenous microbial population. Phenanthrene release or 

bioavailability and migration to the anode’s ROI from the soil was tested by adding a 

non-ionic surfactant Tween 80 (500 mg L-1) to the soil. The catholyte (1000 ppm bromate 

solution) was replaced thrice a month during the operational period. Biological and 
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chemical evaluations were conducted on soil samples by periodically sampling at 2cm, 

4cm and 8cm from the anode of the top, middle and bottom layer of soil. The distance 

from the anode's outer surface to where phenanthrene concentrations are less to that of 

control is known as radius of influence, ROI. No external inoculum was introduced to the 

primary microbes in the soil. 

2.5. Analytical methods 

2.5.1. Chemical analysis 

2.5.1.1. Petroleum hydrocarbon determination 

For the analysis of anolytes samples for the determination of phenanthrene 

concentrations present in the samples, High-performance liquid chromatography (HPLC, 

Dionex GS50, USA) fitted with a Photo-diode Array (PDA) detector (DIONEX, PDA-

100) at 254nm was employed. HPLC conditions employed for analysis of the samples 

taken from the anode chamber were similar as earlier described in previous studies 

(Adelaja et al. [11]). The analytical column was a reverse phase column, SupelcosilTM 

LC-PAH column (150 mm × 4.6 mm). A method as described by Kermanshahi pour et 

al. [14] was employed in the extraction of phenanthrene present in the soil MFC samples.  

Degradation efficiencies were evaluated based on the residual phenanthrene (PHE) 

concentration at the end of MFC operation. 

In order to determine the amount of phenanthrene present in the solid phase of the 

soil MFCs phenanthrene extraction was conducted by adding 5 mL of acetonitrile (ACN) 

to 2 g of collected soil samples in a centrifuge tube as previously described by Coates et 

al. [15] and vortexed for 5 mins. The soil-solvent mixture was sonicated for 1 h and 

subsequently centrifuged at 12000 g for 15 mins. The supernatant liquid was filtered 

through 0.22 µm filter units into 2 mL glass vial before HPLC analyses as described 

above. 

2.5.1.2. Determination of bromate and COD removal in MFCs 

Spectrophotometric method was employed in the quantitative determination of the 

removal of bromate at the end of MFC operation (Emeje et al. [16]). Procedure for 

sample preparations prior analysis at 620nm using a UV-Vis spectrophotometer M 6300 

model (Jenway Staffordshire, UK) as followed as described by Adelaja et al. [17]. The 

percentage bromate removal was calculated based on residual bromated when experiment 
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ended. COD titrimetric procedure was used for determination of the chemical oxygen 

demand (COD) of the samples in line with Environment Agency (UK) Standard method 

5220 D (APHA, [18]).  

2.5.1.3. pH, conductivity and total dissolved solid (TDS) measurements 

The pH of the anodic medium during MFC operations and after each cycle was 

determined with a Mettler Toledo MP220 pH meter (UK). pH changes in the cathode 

chamber of MFCs containing bromate as catholyte were also monitored. Oakton PC-700 

(Oakton Instruments, UK) conductivity meter was used to measure conductivity and 

TDS. 1:5 (w/v) soil-deionized mixture of water was used to detect soil conductivity and 

TDS. 

2.5.1.4. Electrochemical characterisation 

The soil MFCs performance was assessed by measuring the cell voltage and electric 

current across an external resistance of 1000 Ω with a multimeter connected to a personal 

computer by a data acquisition system on an hourly basis under normal operating 

conditions as described by Logan [19]. Polarisation curves were determined by gradually 

increasing the external resistances from 1 Ω to 1 MΩ with the pseudo steady-state 

voltage recorded at about 5 minutes. The total internal resistance (Rint) of the soil MFC 

were determined using the polarisation slope method while current and power densities 

were executed using standard methods (Logan et al. [19], Fan et al. [20], Sleutels et al. 

[21]). 

2.5.1.5. Cyclic voltammetry analysis 

The bioelectrochemical behaviour of soil MFCs was examined using cyclic 

voltammetry with the aid of a Potentiostat-Galvanostat (PG 581, Uniscan Instruments, 

Buxton UK). The scanned potential was between -600 and +200 mV (Vs Ag/AgCl 

reference electrode), at a scan rate of 10 mV/s. The working electrode was anode, 

cathode served as a counter electrode while Ag/AgCl was used as reference electrode 

(BASi, Germany, 4M KCI, +196 mV versus standard hydrogen electrode (SHE) at 25℃) 

in a sealed chamber was used as a reference electrode.   

The bioelectrochemical cell was kept at 30℃ unless otherwise stated. The device was 

operated remotely through a personal computer (PC) using UIE Chem v3.54 software. 
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2.5.1.6. Bioluminescence toxicity assays 

The Microtox standard acute toxicity method was employed in conducting toxicity 

assays on samples drawn from the soil MFCs before and after MFC operation (Gaudet 

[22]). Soil samples were centrifuged at 13.2 x g and subsequently a Whatmanfilter (0.22 

µm) was used to remove suspended biomass and soil particles. The bioluminescent 

marine bacteria used for this assay was Vibrofischeri (13938) which was grown, 

harvested and re-suspended in a sterile 2% w/v NaCl solution before use as described by 

Adelaja et al. [17] for the assay using a Fluostar Optima luminometer. 

2.6. Data analysis 

Statistical analyses were carried out using MATLAB software at significant level, P 

= 0.05. All experiments were done in duplicates and error bars is a function of the 

standard deviation of the mean. Data were treated through using correlation analysis to 

determine the degree of data association.  

3.0. Results and Discussion 

3.1. Pollutants removal and ROI determination during MF Cooperation 

Phenanthrene degradation at different distances (2, 4 and 8 cm) from each MFC 

anode was monitored on day 10, 20, 30, 40, 50 and day 60 during the 60 days MFC 

operation as shown in Figures 2 and 3. 

At day 10, phenanthrene removal from soil at 2 cm from the anode’s outer surface 

were 55 % and 50 % for MFC+S and MFC-S reactors respectively, which was 120-293 

% higher than the non-MFC reactors (E-S and F+S) respectively (Figure 2). The observed 

rapid decrease in phenanthrene after MFC start up may be attributed to the adsorption of 

phenanthrene near the MFC anodes. Adsorption of phenanthrene near MFC anodes after 

MFC start up may be attributed to observed the rapid decrease in phenanthrene 

concentration in the soil. This observation corroborates previous studies conducted by 

Zhang et al. [7] and Lu et al. [23] where similar observations reported were linked to 

hydrocarbon adsorption on the electrode’s surface. 

Phenanthrene degradation rates decreased with increasing distance from the anodes 

from 50-55 % at 2 cm to 38-40 % at 8 cm among MFC reactors. The negative steep slope 

between the ROI and phenanthrene removal at day 10, as shown in Figure 3, indicates a 

smaller ROI by MFC reactors. The decrease in the degradation rates may possibly be due 
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to mass transfer limitations and lower activity of electrochemically active 

microorganisms. However, this limitation was gradually overcome with time from 10 to 

60 days of operation as phenanthrene removal increased, especially at locations further 

away from MFC anodes. The creation of concentration gradient, as indicated by the 

removal of phenanthrene closer to the anode increased with time, and could have driven 

mass movement in the bulk electrolyte towards electrode by increasing ROI. 

 

Figure 2. Phenanthrene removal in soil at distance of 2 - 8 cm from the anode during the 

operating period in MFC with no surfactant (MFC-S) and MFC with surfactant (Tween 

80, 250 mg L-1) amendment (MFC+S) using indigenous soil microorganism as inoculum 

source. Controls were prepared in the same reactors but with no electrodes. Error bars ± 

SD are based on triplicate measurements. E-S and F+S means controls without and with 

surfactant addition respectively. 

There was continuous current production in MFCs over the experimental period 

which perhaps was sustained through steady mass transfer of the substrate towards the 

electrode. However, the phenanthrene degradation speeds in test MFCs is more than that 
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of the control systems with better impact of MFCs on degradation regardless of their 

distances from the anode’s outer surface. 

1. Consequentially, this may have led to improved mass transfer to the electrode and 

supported faster degradation rates. 

 

 

Figure 3. Relationship between phenanthrene removal and the radial distance from the 

MFC anodes at different sampling times. Dashed arrows indicate that maximum ROIs 

were expanding as reflected by the flattening of the slopes. 
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Phenanthrene depletion rates increased with period and attained 84.5-91.6 % in 

MFC+S and 78.3-86.1 % in MFC-S respectively (compared to 37.9-64.1 % in controls) 

with the phenanthrene fraction remaining in the soil being about the same for entire radial 

distances from anodes (Figure 2). There was a statistically substantial difference (at 

p=0.001) among the MFC+S and MFC-S reactors at all distances from the anode over the 

incubation period. The enhanced degradation performance observed in MFC+S reactor 

compared to MFC-S reactor may be attributed to the contribution from the surfactant 

added in enhancing phenanthrene availability in the soil. 

The amount of surfactant used up during the study (250 mg L-1) seems to enhance the 

surfactant sorption on soil, which may have caused increased in phenanthrene separating 

on soil particles. The result of this study conforms with former findings conducted by Lu 

et al. [23] on the influence of ROI on improved petroleum-hydrocarbon bioremediation 

in polluted soil in MFCs by means of two different cheap electrodes-biochar and graphite 

electrodes. 

In this study, the configuration of the lab-based MFC bioreactor dictates the 

determination of the ROI for the soil MFCs. However, since MFC performance is a 

function of measured ROI, therefore calculated ROIs can be extrapolated based on such 

experimentally-obtained data. The linear regression equations derived for active MFCs at 

day 10 and day 60 can be used to descriptively explain and predict the extension of ROIs 

with respect to time in this saturated soil environment (Figure 3A and 3B). The maximum 

ROI is the maximum distance from the MFC anode at which phenanthrene removal 

efficiency is zero percent in reference to the baseline (anaerobic) control. Since day 10 up 

to 60th day, the estimated maximum ROI augmented from 24-27 cm to 39-41 cm with 

further extension in maximum ROI predicted with increase in time of soil MFC 

operation. 

Lu et al. [23] demonstrated a further increase in maximum ROI at longer periods 

(about 120 days) of MFC operation under similar operating conditions corroborating the 

findings of this study. The radius of influence of a particular remediation technology 

significantly determines its remediation efficiency and cost effectiveness over other 

technologies in line with environmental considerations and therefore it is pivotal for its 

selection as a preferred remediation strategy. The knowledge of the ROI could also be 

very useful in the determining adequate anode electrode size and MFC reactor spacing in 

large scale field applications. 
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Figure 4. (A) Total phenanthrene removal at different distances from the anode at the 

end of testing period in MFC with no surfactant (MFC-S) and MFC with surfactant 

(Tween 80, 250 mg L-1) amendment (MFC+S). (B) Phenanthrene pore water 

concentration in the overlying water in the saturated soil MFC. Controls were prepared in 

the same reactors but with no electrodes. Ravg is the average of removal efficiencies at 

different radial distance from the anode. The results are the mean of triplicate samples 

and error bars represent standard deviation of the mean. E-S and F+S means controls 

without and with surfactant addition respectively. NA-CONTROL is the anaerobic (non-

MFC) control. 
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The phenanthrene concentration in the aqueous phase of the soil MFCs was relatively 

constant across both test MFCs (i.e. MFC+S and MFC-S reactors) over the period of 

MFC operation but was significantly lower than the control reactors indicating better 

degradation efficiency (Figure 4B). The insignificant change in pore water phenanthrene 

concentration (especially in MFC+S and MFC-S reactors) might be due to the dynamic 

balance in the phenanthrene partitioning between the soil-phase and the aqueous phase. 

The dynamic balance in phenanthrene partitioning between the aqueous-soil interface 

suggests a possible balance between the phenanthrene degradation and desorption rates in 

the MFC. 

Figures 2 and 4A clearly demonstrate that phenanthrene degradation near the 

electrode was significantly enhanced relative to the control reactors. Phenanthrene 

fractions remaining on all MFC anodes at the end of the test period were less than 10 %, 

indicating that the majority of the PHE adsorbed by the electrodes were biodegraded by 

anodic microbial respiration rather than chemical/physical adsorption and that the 

adsorption process merely enhanced faster biodegradation rates. 

The removal of phenanthrene was similar to that of TCOD, as shown in Figure 5.  

 

Figure 5. Percentage total COD (TCOD) removal at different distances from the anode 

for the active MFCs and control reactors at the end of 60 days of MFC operation at 

ambient temperature. Ravg is the average of removal efficiencies at different radial 

distance from the anode. Values are means of triplicate measurements ± SD. E-S and F+S 

mean controls without and with surfactant addition respectively. 
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Figure 5 shows the TCOD removal under different MFC conditions at varying radial 

distance from the anode. TCOD removal (which is 72.8 % on the average across all radial 

distances from the anode) in MFC with surfactant amendment, MFC+S, was significantly 

higher (20 %) than in MFC with no surfactant (MFC-S). This suggests that surfactant 

addition may have enhanced bioavailability of not only phenanthrene, but other organic 

matter present in the soil. 

There was a negative linear relationship between the phenanthrene removal 

efficiency and the radial distance from the MFC anodes (Figure 3). The slope of the ROI 

gradually becomes more positive relative to time, indicating a steady ROI’s expansion 

with respect to time of reactor operation. 

In this study, bromate removal in the cathode chamber coupled with phenanthrene 

degradation was monitored over the test period. Bromate removal in both MFCs was 

about 80-95 % on average which is significantly higher than the open circuit controls (15-

40 %) over the 60day period of MFC operation (Figure 6). In the open circuit MFCs, the 

cathode and the anode terminals are physically separated and thus there is no transfer of 

electrons to the cathode which are needed for the electrochemical reduction of bromate to 

bromide ions (that are non-toxic). However, the small bromate reduction (15-40 %) 

observed in the open circuit MFC, as in this study, could be due to possible electron 

transfer across the permeable membrane from the anode to the cathode. This interstitial 

electron transfers especially in soil systems accounted for possible reduction or oxidation 

of pollutants in open circuit MFCs reported previously by Huang et al. [24] and Nielsen 

et al. [25]. 

Findings of this study have for the very first time demonstrated the simultaneous 

removal of two pollutants at both chambers and notably, using bromate as terminal 

electron acceptor in the cathode in lieu of Pt-catalysed oxygen reduction. Previous studies 

on soil MFCs had used Pt-coated cathodes which are expensive and cannot be deployed 

in deep subsurface environments where air/oxygen is largely limited. 

Moreover, this study demonstrated that a tubular MFC configuration can significantly 

enhance phenanthrene biodegradation up to 293 % of that from the baseline reactor with 

the enhanced biodegradation from the MFC anodes extending even to an ROI of 8 cm 

(Figure 2). This results underpins the deplorability of this MFC design in real field 

practices to boost significantly, the biodegradation of petroleum-polluted soils coupled 

with bromate removal. This passive remedial technology is environmentally friendly and 

can significantly reduce clean-up time in a cost effective manner. 
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Figure 6. Bromate removal efficiency in the tubular MFC reactor during 60 days 

operation at incubation temperature between 25 and 30 ℃. The error bars ±SD were 

based on averages measured in triplicate. 

3.2. Voltage generation and electrochemical characterisation of performance of the 

soil MFC 

Phenanthrene and bromate removal during tubular MFC operation over the test 

period was accompanied with concomitant biogenic electricity generation as observed in 

Figure 7. Current density reached approximately 60 mAm-2 and 53 mAm-2 for MFC+S 

and MFC-S respectively during MFC operation (across a 1000 Ω resistor). There was a 

good relationship between electricity generation and phenanthrene microbial degradation 

during the MFC operation, after the completion of the lag phase. The maximum power 

density obtained for MFC+S and MFC-S were 4.69 mWm-2 and 4.06 mWm-2 

respectively, during the experimental period. These voltage generation outcomes were 

like the former reports on the retorts of waterlogged-contaminated soils in electricity 

generation by MFCs (Huang et al. [24], Wang et al. [1], Lu et al. [23]). The gradual 

increase in current generation may be due to bacterial acclimation and marked rise in the 

activity of the electrochemically-active microbial population in the soil. 

Current output during reactor operation was erratic which could be probably due to 

the production of biotransformed intermediate products resulting from phenanthrene 

degradation and mass transfer limitations during the long operational periods (Lu et al. 

[23]; Huang et al. [24]). 
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Figure 7. Current densities of MFC+S and MFC-S during the tubular MFC operations 

over 60 days incubation period (Rext = 1000 Ω). Black arrows indicate the points for 

catholyte replenishment. 

 

Figure 8. The CV curve for phenanthrene in MFC with no surfactant (MFC-S) and MFC 

with surfactant (Tween 80, 250 mg L-1) amendment (MFC+S) at day 10 (solid line) and 

day 30 (dashed line) at sweep rate of 10 mVs-1. 
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The CV (cyclic voltammograms) of the anode chamber of the MFC was analyzed 

during incubation at day 10 and 30 (Figure 8). The cyclic voltammograms for both 

MFC+S and MFC-S showed a substantial oxidation/reduction peak potential shift as 

phenanthrene microbial degradation proceeded in the MFCs from day 10 to 30, indicating 

a detectable drop in anode/oxidation potential resulting from the increasing microbial 

electrochemical oxidation processes occurring at the anode. However, there was more 

slight shift in redox potential in MFC with surfactant amendment (MFC+S) than in MFC 

with no surfactant as shown in Figure 8. This perhaps, might indicate positive impact of 

surfactant addition by possibly increasing phenanthrene bioavailability and mobility 

within the soil matrices or could act as redox electron shuttle for ferrying electrons to the 

anode. 

The addition of surfactant to MFCs, as shown in this study, could enhance 

phenanthrene removal and improve electrochemical performance of MFC. Similarly, Wu 

et al. [26] reported observed enhanced toluene degradation and power generation in 

MFCs amended with a surfactant, pycocyanin which also corroborates findings from this 

study. 

Findings of this study have demonstrated the potential practical application of this 

tubular-type soil MFC system for degradation of hydrocarbon contaminated subsurface 

soil environments coupled with concomitant bioelectricity production. Electrical outputs 

generated in soil MFCs could be employed in the monitoring contaminant's degradation 

profile, reduce the frequency of soil samples (in field applications) and electricity 

generated during the biodegradation can be used as power for remote sensors. 

3.3. Changes in physicochemical characteristics of soil 

Changes in physicochemical properties of the soils such as pH, electrical 

conductivity and total dissolved solid (TDS) are one of the key parameters for 

quantification and validation of hydrocarbon removal driven by microbial action (Figure 

9). The soil pH values for all the MFCs except the controls, decreased up to 0.23 pH units 

in the first 10 d at a radial distance of 2 cm from the BES’s anodes each (relatively lower 

than those obtained at radial distances 4 and 8 cm, demonstrating a minor proton build-up 

was noticed near the anode). A rise in electrical conductivity and TDS of about 25-54 % 

and 17-37 % was closely associated with decrease in pH. A possible explanation for the 

observed trend might be the adsorption of ions present in the soil matrix and accumulated 

hydrogen ions very close to the anode. 
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From day 10 to 60, fluctuations in pH, EC and TDS were observed at all radial 

distances from the anode for active MFCs at each sampling point. The observed 

fluctuation in physicochemical properties of the soil may possibly be due to the dynamic 

formation of intermediate readily oxidisable organic acids from phenanthrene metabolism 

and its subsequent consumption which in turn, resulted into dynamic changes in 

microbial population distribution and redox potentials at the anode during the test period 

(Du et al. [27], Allen et al. [28]). Notably, development of ionic species such as 

intermediate compounds during the biodegradation pathways and dissolution of minerals 

may lead to an increase of conductivity and TDS in soil, especially near the anodes 

(Allen et al. [28], Wang et al. [1]). Soil microbial activity declined as EC increased and 

this might greatly influence other soil chemical activities such as respiration, nitrification 

advection/adsorption, denitrification, and residue decomposition (Allen et al. [28], 

Johnsen et al. [29]). 

Findings from the data analysed above vividly indicated that radial distance from the 

anode of active MFCs was directly related to increase in phenanthrene removal catalysed 

by high microbial activity at distances close to the anode. As presented in Table 1, 

phenanthrene removal is correlated negatively with TDS in the soil (p < 0.05) an 

electrical conductivity (p < 0.05) but positively correlated with total COD (TCOD). 

However, from statistical analysis based on the findings in the study, there is no 

statistically significant correlation between phenanthrene removal, bromate removal and 

pH, indicating that phenanthrene removal does not necessarily depend on the pH or 

bromate removal rates. Notably, bromate removal on the other hand is negatively 

correlated with pH (p < 0.05). Such correlations, associated with phenanthrene 

degradation and bromate removal, gives a holistic view on potential of MFC systems in 

improving phenanthrene removal coupled with bioelectricity generation and supports the 

restoration of the contaminated soil to its natural ecological status. 
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Figure 9. Changes in soil pH, TDS and electrical conductivity in MFC at different 

distance from anodes and control reactors over the tested period. The error bars ±SD 

were based on averages measured in triplicates. E-S and F+S mean controls without and 

with surfactant addition respectively. 
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Table 1. Correlation matrix between selected physicochemical parameters, phenanthrene 

and bromate removal over 60 days experimental period in MFC-S and MFC+S  reactors.  

Data analysed at a level of significance, p = 0.01. 

 
Phenanthrene Bromate TDS EC TCOD 

Bromate 0.004 - 
   

TDS -0.365 -0.008 -   

EC -0.39 -0.011 0.998 -  

TCOD 0.804 0.001 -0.099 -0.117 - 

pH 0.033 -0.298 -0.445 -0.431 0.007 

Correlation: Strong (positive, 0.5 to 1.0 or negative, −1.0 to −0.5). Medium (positive, 0.3 to 0.5 or 

negative, −0.5 to −0.3). Small (positive, 0.1 to 0.3 or negative, −0.3 to −0.1). None (positive, 0.0 

to 0.09 or negative, −0.09 to−0.0). 

3.4. Toxicity determinations in contaminated soil after MFC treatment 

The disposal of phenanthrene-contaminated soil can be performed only when the 

pollutant levels and other toxic organic intermediate products are within permissible 

concentration levels set by relevant regulatory agencies. This ensures it is 

environmentally safe and pose no immediate danger to human health and ecosystems; the 

ultimate goal of any successful remediation process (Liu et al. [30]; Melo et al. [31], 

Ayed et al. [32]). Microbial pollutants degradation usually leads to partial mineralization, 

thus the formation of degradation products with unknown chemical and toxicological 

characteristics which sometimes may even be more toxic than the parent pollutant. The 

percentage relative inhibition of the growth of bioluminescent marine bacteria, V. 

fischeri, in soil extract taken at the start and end of MFC operational period is shown in 

Figure 10. 

Bioluminescence based acute toxicity assays conducted using V. fischeri indicated a 

significant (p < 0.01, t-test) decrease in toxicological level by 65 % and 35 % in MFC 

amended with surfactant (MFC+S) and MFC with no surfactant (MFC-S) respectively 

compared to baseline controls. From Figure 10, the MFC reactors and baseline controls 

after 60 days of incubation were generally less toxic than at the start of treatment. A 
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possible explanation the observed decrease in toxicity level may be attributed to the 

absence or very small amount of phenanthrene and the formation of lower molecular 

weight intermediate products of no or less toxic effect. The findings of the current study 

are in agreement with previous studies under similar soil conditions (Rodrigo et al. [33], 

Hamdi et al. [34]).  

 

Figure 10. Toxicity levels in soil extractions of polluted soil with and without MFC 

treatment operated at 25-30℃ over 60 days incubation period. The error bars represent 

5% of deviation of the mean value for triplicate measurements. MFC-S and MFC+S are 

MFC with no surfactant and MFC with surfactant (Tween 80, 250 mg L-1) amendment 

respectively. E-S and F+S mean controls without and with surfactant addition 

respectively. 

Eco-toxicity testing is one of the remediation techniques employed in the assessment 

of the ecological profile of treated sites and may inform decisions for on-site treatments 

towards a successful reclamation of the contaminated site (Hankard et al. [35], Vogt et al. 

[36], Sarkar et al. [3]). 

Therefore, this study has demonstrated the detoxification capability of MFC system 

over natural attenuation (i.e. a do-nothing scenario) in the treatment of phenanthrene-

contaminated soil in a timely and effective manner under the same environmental 

condition.  
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4.0. Conclusion 

In this study, a tubular MFC system performance in phenanthrene-contaminated soil 

was investigated. This MFC system significantly enhanced the biodegradation efficiency 

of phenanthrene (86 %) in the soil within a ROI up to 8 cm compared to non-MFCs 

control with a projected maximum ROI up to 40 cm. The findings of this study 

established for the first time, the simultaneous removal of phenanthrene and bromate 

(95%) coupled with concomitant bioelectricity generation using MFC systems. 

MFC technology may be used for in situ decontamination of soils due to its potential 

detoxification capacity and could be deployed directly as a prototype-MFC design in field 

applications or integrated with existing infrastructure. Electricity generated could be used 

to power wireless sensors for remote site monitoring and as an indicator for real-time 

contaminant degradation profiling thus greatly reducing the cost of frequent soil samples 

analysis for pollutant degradation monitoring as usually demanded while using other non-

bioelectrochemical, conventional remediation technologies. 
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Appendix A. Supplementary data 

Supplementary data associated with this article can be found, in the online version. 

Table 2. Baseline characterization of the original soil sample. 

Parameter Value 

pH 7.6 

Soil conductivity (µs/cm) 664 

Soil bulk density (g/cm3)  

1.1 

Particle size distribution: 

 % Clay  (0-2µm) 

 % Silt    (2-63µm) 

 % Sand  (63 µm - 2mm) 

Textural class of soil: 

 

9 

28 

63 

Sandy Loam 

Total Nitrogen(%) 

Total carbon(%) 

Total organic carbon (%) 

Total inorganic carbon (%) 

Organic matter(%) 

Carbon: Nitrogen (C:N) ratio Background 

phenanthrene   (mg/kgDS) 

0.297 

4.497 

3.947 

0.549 

6.8 

15 

1.950 

Water soluble anions (mg/kgDS):  

Cl 

N(NO3) 

S(SO4) 

P(PO4) 

N(NO2) 

 

27.67 

7.85 

7.89 

15.90 

2.38 

Water extractable metallic ions (mg/kgDS):  

K 

Ca 

Mg 

Na 

Al 

Fe 

 

440 

3124 

92 

9.7 

0.61 

0.93 

 

Exchangeable cations cmol(+)/kg DS):  

K 

Ca 

Mg 

Na 

Al 

Fe 

 

 

1.124 

15.590 

0.754 

0.042 

0.007 

0.005 

DS: Dry soil 
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