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Abstract

Mono-implicit Runge-Kutta (MIRK) methods are Runge-Kutta methods having its stages depending

on its output. In this paper, we develop a family of second derivative mono-implicit Runge-Kutta

(SDMIRK) methods for the numerical solution of stiff initial value problems (IVPs) in ordinary

differential equations (ODEs). The SDMIRK methods are extension of the MIRK having first and

second derivative terms. The general order conditions for the stages and output methods are presented.

The SDMIRK methods for stages s = 3 and s = 4 derived were found to be A-stable, while methods for

s = 5 and s = 6 are A(α)-stable. Implementation procedures and numerical experiment are discussed

herein. Results obtained by the SDMIRK method are favourable than the results of second derivative

backward difference formular (SDBDF) and second derivative linear multistep method (SDLMM).

1 Introduction

The modelling of physical phenomena often occur in science, engineering and economics, with some of

their applications including the determination of motion of planetary bodies, rate of decay of radioactive

elements and change in population over a period of time [5]. These mathematical models always give birth

to differential equations that contain some derivatives of unknown function with respect to independent

variables. If a differential equation involves a derivative with respect to a single dependent variable, it is

called an ordinary differential equation (ODE). Here, our focus is on a subclass of implicit Runge-Kutta

(IRK) method called mono-implicit Runge-Kutta (MIRK) method [7] for the numerical solution of stiff

initial value problems (IVPs) of ODEs in the form

y′(x) = f(x, y(x)), y(x0) = y0, (1)

where y ∈ Rm and f : R× Rm → Rm.
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Runge-Kutta method (RKM) was first proposed by Carl Runge in 1895, further contributions were

made by Heun and Martin in 1900 and 1901 respectively [10]. Most explicit RKMs have small region

of absolute stability, it is generally known that 4th order explicit RKM have a region of stability which

intersects the imaginary and the negative real axis at |hλ| ≈ 2.7 [12, 28]. This stability limitation can be

resolved by considering IRK integrators. Ehle [19] revealed that the s-stage implicit RKMs derived by

Butcher [6,7] are all A-stable in the spirit of Dahlquist [16]. One practical disadvantage such methods suffer

is that, the solution of the non-linear implicit equations occurring at each time step is harder to achieve

than in the case of linear multistep methods. Cash [12] constructed efficient L-stable IRK methods similar

in design to the classical RKMs suitable for integration of both stiff and non-stiff systems of inherently

stable ODEs. The IRK methods derived in [12] have reasonable order accuracy while still maintaining

computational accuracy, and preserving the one-step nature of the methods. Voss and Muir [42] revealed

that the implicit Runge-Kutta methods suffer from the phenomena of order reduction when applied for

the integration of stiff ODEs; regardless of its classical order, the output method will behave as if its order

is that of its stage order. Chen [15] proposed IRK methods that prevent the methods from behaving as if

they of lower order (i.e suffering from order reduction) by extending the tableau of different types of IRK

methods to obtain methods with higher stage order. Okuonghae and Ikhile [37] considered the extension

of popular Runge-Kutta method to second derivative IRK methods for the direct solution of stiff initial

value ordinary differential equations. The use of collocation and interpolation technique was used for the

derivation of these methods. The last stage of the input approximation is identical to the output method,

and the methods examined are L(α)−stable. Several researchers have also developed IRK methods for

stiff IVPs of ODEs include [2–5, 7–10, 12, 18, 21–24, 26, 29, 31, 34, 35, 40, 41, 50–53] just to mention a few.

RKMs have also been extended to two-step RKMs (see [43–45]) and second derivative TSRK methods

(see [43]). The extension and formation of Runge-Kutta methods has given wider popularity to the RKMs.

The general form of an s−stage RKM is

Yr = yn + h

s∑
j=1

ar,jf(kj), r = 1(1)s,

yn+1 = yn + h
s∑

r=1

brf(Yr),

(2)

where h is the step size, s is the number of stages, Yr, r = 1(1)s are the stages and the numerical

approximation to the exact solution y(xn + crh), yn+1 is the output method and approximation to the

exact solution y(xn + h), and br ar,j are real and constant coefficients.

The RKM (2) can be represented in Butcher’s tableau defined as

c A

bT
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where A = {ar,j}sr,j=1, c = (c1, c2..., cs)
T , bT = (b1, b2..., bs).

1.1 The Mono Inplicit Runge-Kutta Methods

Among the various sub-classes of implicit Runge-Kutta methods (IRK) been proposed for the numerical

solution of stiff ODEs is mono-implicit Runge-Kutta (MIRK) method ( [13, 14, 18, 30]. Capper and

Moore [11] proposed MIRK methods of orders 10 and 12 alongside their the local truncation error,

numerical experiments were conducted on some test problems and it was found that the order 12 scheme

provides a significantly greater accuracy than the tenth order scheme. Also, [17] investigated the conditions

to be met by MIRK methods in order to generate a mono-implicit Runge-Kutta-Nystrom (MIRKN)

method that is P-stable. [32] considered MIRKN methods that are suitable for systems of second order

ODEs and also derived optimal symmetric methods of orders 2, 4 and 6. [38] introduced continuous

MIRKN methods which allows continuous solution and derivative approximation. Most MIRK methods

do suffer order reduction (a condition where a numerical scheme converges with numerical order lower

than its theoretical order), therefore [18] proposed a generalization of MIRK methods that do not suffer

order reduction when applied for the numerical solution of stiff ODEs. The general form of a MIRK

method is defined as

Yr = (1− vr)yn + vryn+1 + h
r−1∑
j=1

xr,jf(Yj), r = 1, ..., s,

yn+1 = yn + h
s∑

r=1

brf(Yr),

(3)

where h is the step size, s is the number of stages, Yr, r = 1(1)s are the stages and the numerical

approximation to the exact solution y(xn + crh), yn+1 is the output method and approximation to the

exact solution y(xn + h), and br xr,j are real and constant coefficients. The MIRK method (3) can be

represented in a tableau given as

c v X

bT
=

c1 v1 0 0 · · · 0

c2 v2 a21 0 · · · 0
...

...
...

...
. . .

...

cs vs as1 as2 · · · ass

b1 b2 · · · bs

, (4)

where v = (v1, v2, ..., vs)
T , c = v +Xe = (c1, c2, ..., cs)

T and X is s by s matrix whose (r, j)th component

is xr,j . X is strictly lower triangular matrix. The MIRK method (3) is equivalent to the implicit

Runge-Kutta (IRK) (2) with A = X + vbT [12].
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The stability function, R(z), of the MIRK method (4) [15,35] is given by

P̄ (z, e− v)

P̄ (z,−v)
, (5)

where

P̄ (z, ū) = 1 + zbT (I − zX)−1ū, ū ∈ Rs.

The stability function is used to determine the stability properties of a MIRK method.

Definition 1.1. The MIRK method (3) is A−stable if |R(z)| ≤ 1, whenever Re(z) ≤ 0.

Definition 1.2. The MIRK method (3) is L−stable if it is A−stable and |R(z)| → 0 as z →∞.

IRK methods that satisfy Definitions 1 and 2 are suitable for the numerical solution of stiff problems (1)

[46,47]. The advantage of MIRK methods (3) is that in implementation, it attract low computational cost

in term of the number of non-linear equations to be solved. The other sections of this paper are arranged

as follows; Section 2 introduces the generalization to the second derivative mono-implicit Runge-Kutta

(SDMIRK) methods, Section 3 presents the order conditions and linear stability of the SDMIRK methods,

while in Section 4 examples of the SDMIRK methods are derived and numerical experiments are carried

out in Section 5.

2 Generalized SDMIRK Methods

Several authors have extended classical numerical methods (which includes, Runge-Kutta methods, linear

multistep methods and general linear methods) to second derivative methods, some of which are the works

of [23, 29, 31, 33–37, 39, 43, 47–49]. In the same spirit, the MIRK (3) is extended to SDMIRK methods.

The proposed generalized SDMIRK scheme for the numerical integration of (1) is given as:

Yr = (1− vr)yn + vryn+1 + h
r−1∑
j=1

xrjf(Yj) + h2
r−1∑
j=1

x̄rjg(Yr), r = 1(1)s,

yn+1 = yn + h

s∑
r=1

brf(Yr) + h2
s∑

r=1

b̄rg(Yr),

(6)

where h is the step size, s is the number of stages, Yr, r = 1(1)s are the stages and the numerical

approximation to the exact solution y(xn + crh), yn+1 is the output method and approximation to the

exact solution y(xn+h), f(Yj) ≈ y′(xn+jh), g(Yj) ≈ y′′(xn+jh) and br, b̄r, xr,j , x̄r,j are real and constant

coefficients. The abscissa cr = vr +
∑r−1

i=1 xri +
∑r−1

i=1 x̄ri which is equivalent to c = Xe+ X̄e+ v in matrix
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form. The SDMIRK method (6) can also be written in the Butcher’s tableau as

c v X X̄

bT b̄T
=

c1 v1 x11 · · · x1s x̄11 · · · x̄1s

...
...

...
. . .

...
...

. . .
...

cs vs xs1 · · · xss x̄s1 · · · x̄ss

b1 · · · bs b̄1 · · · b̄s

. (7)

In this paper, the coefficients of the SDMIRK method (6) shall be presented in the tableau format (7).

3 Order Conditions and Stability of the SDMIRK Method (6)

The stages Yr, r = 1(1)s of the SDMIRK method (6) are of order q, and it is given by,

Yr = y(xn + crh) +O(hq+1), r = 1(1)s, (8)

and the output method yn+1 is of order p, and it is given by,

yn+1 = y(xn + h) +O(hp+1). (9)

It is therefore possible to derive the stage order conditions and the order order conditions by expanding

(11) and (12) by Taylor series about xn, we therefore state the following theorem.

Theorem 3.1. The stage Yr of the SDMIRK method (6) is of order q if

Xe+ e = c, j = 1, e = (1, 1..., 1)T ,

Xcj−1

(j − 1)!
+

X̄cj−2

(j − 2)!
+
v

j!
=
cj

j!
j = 2, 3, ..., q,

(10)

and the error constant Cq+1 of the stage Yr is

Cq+1 =
cq+1

(q + 1)!
−
(
Xcq

q!
+

X̄cq−1

(q − 1)!
+

v

(q + 1)!

)
, q ≥ 1. (11)

Proof. For the stages of the SDMIRK method (6), the local truncation error (lte) is given as

lte(xn) = y(xn + ch)−
(
(e− v)y(xn) + vy(xn + h) + hXy′(xn + ch) + h2X̄y′′(xn + ch)

)
(12)

expanding (12) by Taylor’s series about xn gives

lte(xn) = C0y(xn) + C1hy
′(xn) + C2h

2y′′(xn) + · · ·+ Cqh
qy(q)(xn) + Cq+1h

q+1y(q+1)(xn) +O(hq+2)

≤ Cq+1h
q+1y(q+1)(xn) +O(hq+2).

(13)
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where
C0 = 0,

C1 = c− (Xe+ e) ,

C2 = c2

2! −
(
Xc+ X̄ + v

2!

)
,

...

Cq = cq

q! −
(
Xcq−1

(q−1)! + X̄cq−2

(q−2)! + v
q!

)
,

Cq+1 = cq+1

(q+1)! −
(
Xcq

q! + X̄cq−1

(q−1)! + v
(q+1)!

)
.

Since the method is of order q, then

C0 = C1 = · · · = Cq = 0,

and Cq+1 6= 0. Thus giving the order conditions (10) and error constant (11).

Theorem 3.2. The output method of the SDMIRK method (6) is of order p if

bT e = 1, j = 1, e = (1, 1..., 1)T ,

bT cj−1

(j − 1)!
+
b̄T cj−2

(j − 2)!
=

1

j!
, j = 2, 3, ..., p.

(14)

and the error constant Cp+1 of the output method is

Cp+1 =
1

(p+ 1)!
−
(
bT cp

p!
+
b̄T cp−1

(p− 1)!

)
, p ≥ 1. (15)

Proof. For the output method of the SDMIRK method (6), the local truncation error (lte) is given as

lte(xn) = y(xn + h)−
(
y(xn) + hbT y′(xn + ch) + h2b̄T y′′(xn + ch)

)
, (16)

again, expanding (16) by Taylor’s series about xn gives

lte(xn) = C0y(xn) + C1hy
′(xn) + C2h

2y′′(xn) + · · ·+ Cph
py(p)(xn) + Cp+1h

p+1y(p+1)(xn) +O(hp+2)

≤ Cp+1h
p+1y(p+1)(xn) +O(hp+2).

(17)

where
C0 = 0,

C1 = 1− bT e,
C2 = 1

2! −
(
bT c+ b̄T

)
,

...

Cp = 1
p! −

(
bT cp−1

(p−1)! + b̄T cp−2

(p−2)!

)
,

Cp+1 = 1
(p+1)! −

(
bT cp

p! + b̄T cp−1

(p−1)!

)
.
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The output method is of order p, then

C0 = C1 = · · · = Cp = 0,

however, Cp+1 6= 0. Thus giving the order conditions (14) and error constant (15).

Definition 3.3. The SDMIRK method (6) is pre-consistent if

Xe+ v = c,

bT e = 1.
(18)

Definition 3.4. The SDMIRK method (6) is consistent if p ≥ 1.

Applying the SDMIRK method (6) written in the tableau form (7) to the scalar test problem,

y′(x) = λy(x), λ > 0, (19)

we have

yn+1 = R(z)yn, (20)

where,

R(z) =
P̄ (z, e− v)

P̄ (z,−v)
, (21)

with the definition that

P̄ (z, w) = 1 + (zbT + z2b̄T )(I − zX − z2X̄)−1w. (22)

The R(z) in (19) is the stability function of the SDMIRK method (6).

Definition 3.5. The SDMIRK method (6) is A−stable if R(z) defined by (17) satisfies |R(z)| ≤ 1,

whenever Re(z) ≤ 0.

Definition 3.6. The SDMIRK method (6) is L−stable if it is A−stable and R(z) defined by (17) satisfies

|R(z)| → 0 as z →∞.

In the next section, we construct SDMIRK methods with s = 3, 4, 5, 6. These methods are derived in a

way that the stage order q equals the output order p. This is to ensure that the SDMIRK methods do

not suffer order reduction [see 43].

4 Derivation of the Methods

In the derivation of the SDMIRK method (6) with stage number s and of order q = p, the procedures are:

Earthline J. Math. Sci. Vol. 15 No. 4 (2025), 583-603
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i. choose values for s, q and p. Here, we choose q = p.

ii. set the values of s, q and p into the order conditions (10) and (13) for the stages and output method

respectively.

iii. obtain the arising system of equations.

iv. solve the arising system of equations in terms of the unknown real constant coefficients

v, br, b̄r, xr,j , x̄r,j .

v. set values for the abscissae cr, r = 1(1)s. Here, the cr values are chosen as c1 = 0, c2 = 1, and

cr 6= c1, r = 3(1)s, cr 6= c2, r = 3(1)s.

Here are some examples of SDMIRK method (6).

4.1 Method of order p = q = 6; s = 3

Following the approach discussed above, the stage order conditions for the SDMIRK method (6) with

s = 3, p = q = 6 are given as

Xe+ v = c, Xc+ X̄e+
v

2
=
c2

2
,

Xc2

2
+ X̄c+

v

6
=
c3

5
,

Xc3

6
+
X̄c2

2
+

v

24
=
c4

24
,

Xc4

24
+
X̄c3

6
+

v

120
=

c5

120
,

Xc5

120
+
X̄c4

24
+

v

720
=

c6

720
,

(23)

and the output method order conditions are

bT e = 1, bT c+ b̄T e =
1

2
, bT c2 + 2b̄T c =

1

3
, bT c3 + 3b̄T c2 =

1

4

bT c4 + 4b̄T c3 =
1

5
, bT c5 + 5b̄T c4 =

1

6
.

(24)

Next we solve the system of equations (21) and (22) in terms of v,X, X̄, b and b̄ and choose values for

the abscissae c. Here, c1 = 0, c2 = 1 and c3 6= 0, 1. Choosing c3 = 4
5 , the SDMIRK method (6) with

s = 3, p = q = 6 is given in the tableau form as

c v X X̄

bT b̄T
=

0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0
4
5

4303125
13312

−3879865
26625

−4640625
26624

55
104

−1098075
53248

2041875
53248 0

46609
101250

4297
7986

107648
67381875

901
13500

−797
7260

−416
408375

. (25)

The stability function of the SDMIRK method (23) is

R(z) =
5760− 3560z − 468z2 + 462z3 + 121z4

3(1920− 3040z + 1924z2 − 570z3 + 75z4)
.
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The boundary locus plot of the SDMIRK method (23) is shown in Figure 1. The stability plot shows

that the SDMIRK method (23) is A−stable (since the stability lies in the entire left half of the complex

plane).

Figure 1: Boundary locus plot of the SDMIRK method (23).

4.2 Method of order p = q = 7; s = 4

The stage order conditions of the SDMIRK method (6) with s = 4, p = q = 7 are given as

Xe+ v = c, Xc+ X̄e+
v

2
=
c2

2
,

Xc2

2
+ X̄c+

v

6
=
c3

6
,

Xc3

6
+
X̄c2

2
+

v

24
=
c4

24
,

Xc4

24
+
X̄c3

6
+

v

120
=

c5

120
,

Xc5

120
+
X̄c4

24
+

v

720
=

c6

720
,

Xc6

720
+
X̄c5

120
+

v

5040
=

c7

5040
,

(26)

and the output method order conditions are

bT e = 1, bT c+ b̄T e =
1

2
,

1

2
bT c2 + b̄T c =

1

6
,

1

6
bT c3 +

1

2
b̄T c2 =

1

24
,

1

24
bT c4 +

1

6
b̄T c3 =

1

120
,

1

120
bT c5 +

1

24
b̄T c4 =

1

720
,

1

720
bT c6 +

1

120
b̄T c5 =

1

5040
.

(27)
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Solving the systems of equations (24) and (25), then setting c = (0, 1, 1
2 ,

3
4)T gives the SDMIRK method

(6) of order p = q = 7 for s = 4 defined by

c v X X̄

bT b̄T
=

0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0
1
2

1
2

3
32

−3
32 0 0 1

192
1

192
−1
24 0

3
4

1431
2048

237
4096

−459
4096

27
250 0 27

8192
45

8192
−9
512 0

0 251
91

−544
91

384
91

−46
4095

−523
2730

−1163
1365

−5648
4095

, (28)

with the stability function given as

R(z) =
16773120− 28811520z − 15177120z2 − 3221040z3 − 381468z4 − 27118z5 − 1059z6

16773120− 45584640z + 22020960z2 − 5245200z3 + 751812z4 − 66906z5 + 3177z6
.

The boundary locus plot of the SDMIRK method (26) is shown in Figure 2, and it is seen that the

SDMIRK method (26) is A−stable. (having the region of absolute stability in the interval (−∞, 0]).

Figure 2: Boundary locus plot of the SDMIRK method (26).

http://www.earthlinepublishers.com



Second Derivative Mono-Implicit Runge-Kutta Methods 593

4.3 Method of order p = q = 9; s = 5

The stage order conditions for the SDMIRK method (6) with s = 5 and order p = q = 9 are given as

Xe+ v = c, Xc+ X̄e+
v

2
=
c2

2
,

Xc2

2
+ X̄c+

v

6
=
c3

6
,

Xc3

6
+
X̄c2

2
+

v

24
=
c4

24
,

Xc4

24
+
X̄c3

6
+

v

120
=

c5

120
,

Xc5

120
+
X̄c4

24
+

v

720
=

c6

720
,

Xc6

720
+
X̄c5

120
+

v

5040
=

c7

5040
,

Xc7

5040
+
X̄c6

720
+

v

40320
=

c8

40320
,

Xc8

40320
+
X̄c7

5040
+

v

362880
=

c9

362880
,

(29)

and the output order conditions are given as

bT e = 1, bT c+ b̄T e =
1

2
,

1

2
bT c2 + b̄T c =

1

6
,

1

6
bT c3 +

1

2
b̄T c2 =

1

24
,

1

24
bT c4 +

1

6
b̄T c3 =

1

120
,

1

120
bT c5 +

1

24
b̄T c4 =

1

720
,

1

720
bT c6 +

1

120
b̄T c5 =

1

5040
,

bc7

5040
+
b̄c6

720
=

1

40320
,

bc8

40320
+

b̄c7

5040
=

1

362880
.

(30)

Solving the order conditions (27) and (28), then setting c = (0, 1, 1
3 ,

2
3 ,

3
4)T .

c v X X̄

bT b̄T
=

0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0
1
3

313
729

−38
729

49
729 0 −1

9 0 4
2187

5
2187

−21
81

−21
81 0

2
3

416
729

−49
729

38
729

1
9 0 0 5

2187
4

2187
−21
81

−21
81 0

3
4

77409
131

−288063
4194304

208749
4194304

448335
4194304

299619
4194304 0 9693

4194304
7335

4194304
−48843
4194304

−88209
4194304 0

0 35671
287280

5184
16625

55323
10640

−2080768
448875

1
380

61
13680

−297
13300

351
2128

512
1995

.

(31)

The stability function of the SDMIRK method (29) is

R(z) =
1787114240 + 11378465280z + 3225594960z2 + 54585900z3 + 64691460z4 + 4888512z5 + 274095z6 + 10441z7 + 225z8

17871114240 + 6492648960z + 1423623600z2 − 30977640z3 + 39494220z4 − 3704160z5 + 344949z6 − 20427z7 + 675z8
,

whose boundary locus plot shown in Figure 3 suggests that the SDMIRK method (29) is A(α)−stable.
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Figure 3: Boundary locus plot of the SDMIRK method (29).

4.4 Method of order p = q = 11; s = 6

The stage order conditions for the SDMIRK method (6) with s = 6 and of order p = q = 11 are given as

Xe+ v = c, Xc+ X̄e+
v

2
=
c2

2
,

Xc2

2
+ X̄c+

v

6
=
c3

6
,

Xc3

6
+
X̄c2

2
+

v

24
=
c4

24
,

Xc4

24
+
X̄c3

6
+

v

120
=

c5

120
,

Xc5

120
+
X̄c4

24
+

v

720
=

c6

720
,

Xc6

720
+
X̄c5

120
+

v

5040
=

c7

5040
,

Xc7

5040
+
X̄c6

720
+

v

40320
=

c8

40320
,

Xc8

40320
+
X̄c7

5040
+

v

362880
=

c9

362880
Xc9

362880
+

X̄c8

40320
+

v

3628800
=

c10

3628800
,

Xc10

3628800
+

X̄c9

362880
+

v

39916800
=

c11

39916800
,

(32)

and the output method order conditions are

bT e = 1, bT c+ b̄T e =
1

2
,

1

2
bT c2 + b̄T c =

1

6
,

1

6
bT c3 +

1

2
b̄T c2 =

1

24
,

1

24
bT c4 +

1

6
b̄T c3 =

1

120
,

1

120
bT c5 +

1

24
b̄T c4 =

1

720
,

1

720
bT c6 +

1

120
b̄T c5 =

1

5040
,

bc7

5040
+
b̄c6

720
=

1

40320
,

bc8

40320
+

b̄c7

5040
=

1

362880
bc9

362880
+

b̄c8

40320
=

1

3628800
,

bc10

3628800
+

b̄c9

362880
=

1

39916800
.

(33)
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Solving the system of equations (30) and (31), then setting c = (0, 1, 1
2 ,

2
3 ,

3
4 ,

4
3)T , we have the SDMIRK

method
c v X X̄

bT b̄T
(34)

where

v =

(
0, 0,

184991

2023391
,
195808

203391
,

3912057

40636232
,
32783360

203391

)T

,

X =



0 0 0 0 0 0

0 0 0 0 0 0
−220042
3050865

757079
82373355

−64412
523125

−3421
4185

4399824896
10296669375 0

−223757
3050865

323974
82373355

−1567
523125

−6236
4185

13040091136
10296669375 0

−47675871
650117120

2551701
650117120

−242159949
81264640000

−940827717
650117120

50637
38750 0

−16782496
3050865

−1416929788
82373355

−73376
523125

−12685472
4185

−32113470472192
10296669375 0


,

X̄ =



0 0 0 0 0 0

0 0 0 0 0 0
4136

3250865
1439

5491557
−3314
313875

−79
12555

−31981568
686444625 0

4811
3050865

640
5491557

−799
313875

−794
12555

−52953088
686444625 0

1024893
650117120

15123
130023424

−41275251
16252928000

40684761
650117120

−9633
124000 0

8752288
3050865

−2856805
5491557

3048928
313875

1908848
12555

88852135936
686444625 0


,

bT =
[

0 1172327
10644480

8328
89375

−493371
80080

40336031744
57593913125

7265463
1757916160

]
,

and

b̄T =
[

70380080 79081
23063040

−102561
2002000

−267651
640640

−1122304
6131125

35313
125565440

]
.

The stability function of the SDMIRK method (32) is

R(z) =
P (z)

Q(z)
,

where

P (z) = A(z) +B(z),

Q(z) = C(z) +D(z),

and

A(z) = −281448886118400− 314202405888000z − 95083542550080z2

−14280918321600z3 − 1212571571400z4,

B(z) = −51385155840z5 + 573366600z6 + 231709440z7 + 16163478z8

+614829z9 + 11771z10,
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C(z) = −281448886118400− 32753519769600 + 78394420278720z2

−29390431029120z3 + 6166606201560z4,

D(z) = −878375181240z5 + 91463669100z6 − 7163579436z7 + 420059499z8

−17487342z9 + 423756z10.

whose boundary locus plot (shown in Figure 4) shows that it is A(α)−stable.

Figure 4: Boundary locus plot of the SDMIRK method (32).

5 Numerical Experiment

The implementation of the SDMIRK method (6) is discussed herein. A test example is carried out by

implementing the sixth order SDMIRK method (23) on some stiff problems and the results of the sixth

order SDMIRK method (23) are compared with the results of some existing methods (which includes,

the six order second derivative linear multi-step method (SDLMM) of [23] and the sixth order second

derivative backward difference formula (SDBDF) [20]).
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Since the stages of the SDMIRK method (6) are implicit, we resolve its implicitness using the Newton’s

method. To carry out this, the non-linear equation defining the implicit stage values are

Yr = (1− vr)y[j]
n + vry

[j]
n+1 + h

r−1∑
i=1

xrif(y[j]
r ) + h2

s∑
i=1

x̄rig(y[j]
r ). (35)

Thus, resolving the implicitness by the Newton’s method gives,

Y [j+1]
r = Y [j]

r −
(
Is − hXJ(Y [j]

r )− h2X̄J ′(Y [j]
r )
)−1

F (Y [j]
r ), (36)

where J and J ′ are the Jacobian matrices,

J(Y [j]
r ) =

∂fi
∂yj

; J ′(Y [j]
r ) ≈

(
∂fi
∂yj

)2

. (37)

Our starting values for the SDMIRK method (23) is obtained from the explicit Euler scheme

yn+1 = yn + hfn. (38)

We implement the SDMIRK method (23), SDLMM [23] and SDBDF [20] of the following non-linear stiff

problems.

Problem 1 [18]

y′1 = −8y1 + 7y2, y1(0) = 1, y1(x) = 2e−x − e−50x,

y′2 = 42y1 − 43y2, y2(0) = 8, y2(x) = 2e−x + 6e−50x,

x ∈ [0, 15].

(39)

Problem 2 [1]

y′1 = −10004y1 + y4
2, y1(0) = 1, y1(x) = e−4x,

y′2 = y1 − y2(1 + y3
2), y2(0) = 1 y2(x) = e−x,

x ∈ [0, 15].

(40)
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Problem 3 [27]

y′(x) = 104 (y − φ(x) + φ′(x)) , y(0) = φ(0), y(x) = φ(x)

φ(x) = sinx,

(41)

Tables 5.1–5.3 shows the results of the SDMIRK method (23), SDLMM [23] and SDBDF [20] when

implemented on problems 1–3. In the tables, the absolute global error are presented.

Table 5.1 shows that the error obtained from the SDMIRK method (23) is far smaller than that

Table 5.1: Numerical results of problem 1 for h = 10−2.

x yn Error in SDMIRK (23) Error in SDLMM [23] Error in SDBDF [20]

5.0 y1 5.5196× 10−13 2.8297× 10−6 4.4683× 10−6

y2 5.5196× 10−13 2.8297× 10−6 4.4683× 10−6

10.0 y1 7.4412× 10−15 1.9066× 10−8 3.0107× 10−8

y2 7.4412× 10−15 1.9066× 10−8 3.0107× 10−8

15.0 y1 7.5199× 10−17 1.2847× 10−10 2.0286× 10−10

y2 7.5199× 10−17 1.2847× 10−10 2.0286× 10−10

obtained from the SDLMM [23] and SDBDF [20] methods. Hence SDMIRK method (23) gives better

accuracy. The results in Table 5.2 confirms that the SDMIRK method (23) performs better than

Table 5.2: Numerical results of problem 2 for h = 10−2.

x yn Error in SDMIRK (23) Error in SDLMM [23] Error in SDBDF [20]

5.0 y1 7.4988× 10−15 1.731× 10−12 2.0611× 10−9

y2 4.373× 10−9 6.7380× 10−3 6.7379× 10−3

10.0 y1 1.5456× 10−23 4.5400× 10−5 2.1730× 10−3

y2 2.9468× 10−11 4.5400× 10−2 4.5399× 10−5

15.0 y1 3.1857× 10−32 3.0590× 10−23 2.0286× 10−23

y2 1.9855× 10−13 2.0230× 10−7 3.0450× 10−7

SDLMM [23] and SDBDF [20]. Again, Table 5.3 shows that the error from the SDMIRK method (23) is

better than that of the SDLMM [23] and SDBDF [20].
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Table 5.3: Numerical results of problem 3 for h = 10−2.

x yn Error in SDMIRK (23) Error in SDLMM [23] Error in SDBDF [20]

0.2 y 4.2353× 10−7 5.7636× 10−3 1.8865× 10−1

0.4 y 3.8585× 10−7 0.11495× 10−1 3.7939× 10−1

0.6 y 3.3278× 10−7 1.6756× 10−2 5.5462× 10−1

0.8 y 2.6645× 10−7 2.133× 10−2 7.0733× 10−1

1.0 y 1.8949× 10−7 2.5056× 10−2 8.3144× 10−1

6 Conclusion

In this paper, a class of generalised SDMIRK methods have been introduced. This method is an extension

of MIRK method discussed in [18]. The SDMIRK method (6) derived in section (4) reveals that the new

schemes enjoyed A-stability and A(α)-stability properties. The SDMIRK methods (23), SDLMM [23] and

SDBDF [20] have been implemented on problems 1–3 and the results obtained show that the SDMIRK

outperforms SDLMM [23] and SDBDF [20].
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