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Abstract

A certain class of functions, analytic and subordinate to the modified sigmoid function, is defined.
Coefficient inequalities, Toeplitz, distortion, and Fekete-Szegd problems of this class were investigated.
It was observed that the results obtained provide extensions to many known results in geometric
function theory. Special cases of the results were equally highlighted.

1 Introduction

Denote by ¢ the class of all functions
o)
TE) =6+ antl (1)
h=2

analytic in the open unit disc A = {£ : |{| < 1} and are normalized by Y(0) = Y'(0) — 1 = 0. Let S
denote the subclass of functions of ¢ which are univalent in the open unit disk A and let C, S* and K be
the usual subclasses of S consisting of functions that are convex, starlike and close-to-convex with respect
with the origin. A function T € p is said to be univalent in the unit disk A if T is analytic in A and if for
1,6 € A, Y(&) = T(&2) whenever & = &.

A function T is called a Bazilevic function of type « if there exists a function g € S* such that for

each o > 0 and real §, the following condition holds:
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whenever £ € A.

The class of Bazilevic functions of type « shall be denoted by B(«) (see Singh [18], Mohsan [13])
and we shall use that notation in this work. Note that B(a) C S, B(1) = Ky and B(0) C S*.
Properties of B;(1) has been investigated by many researchers in recent years. Shell-Small [17] obtained
sharp estimates for the moduli of the coefficients of B;(1) and its Fekete-Szego functional. Thomas [20]
obtained sharp bounds for the second Hankel determinant, the initial coefficients of the function log(@)
including the initial coefficients of the inverse of Y. Marjono [12] presented the result of Singh concerning
sharp value for the coefficients of B1(1),|a1|, |az|, |as| and |a4| and gave the solution for the Fekete-Szego
problem |ag — pa2| for any real and complex number y for the coefficients of function in B;(a). Some years
later, Sadaf et al. [16], introduced and studied a subclass of analytic function defined using the concept
of Bazilevic and Janowski functions and various properties like coefficient estimates, Fekete-Szego type
inequalities, arc length problem and growth rate of coefficient were investigated. Elumalai and Abbas [2]
recently introduced two new subclasses of regular and bi-univalent functions using Laguerre polynomials
where some new and interesting results were obtained. More results were also obtained in this line of
study by Murat et al. [14] and Made Asih et al. [10]. Fitri [5] obtain some coefficient inequalities of
Bazilevic functions in a given sector. Using the idea of quasi-subordination, Karthikean et al. |7] studied
the Bazilevic functions and obtained some results. In this work, it is aimed that some coefficient bounds,
distortion and Fekete-Szego problems of the Bazilevic function related to the modified sigmoid function

shall be investigated.
For T € p, such that T(0) =1 and Y/(0) =0, Y € By(a) C S if and only if

Re{ ['r’(g)Tf)

They are called the Bazivelic functions, in this case of order a.

]ail} >0, €A, for a>0.

An analytic function T is said to be subordinate to an analytic function g written as Y (&) < g(&), if

and only if there exists a function w € S of the form
w(€) = 1€ + 28 + e’ +eat! + o8+ (€€ D),

analytic in A, such that w(0) = 0, |w(§)| < 1 and Y(£) = g(w(&)). If g is univalent in A, then T < ¢ is
equivalent to Y(0) = ¢(0) and g(A) C T(A).

Pommerenke in 1975, defined for given parameters ¢q,h € N = {1,2,3,...}, the Hankel determinant
Hany, 5(Y) for a function T € g of the form (1) by

ap ap+1 0 OGptn—1
ap+1 apy2 - Afitn
Hang, 5(T) = : : : . (2)
ap+n—1  Qptn " Apt2n—2-
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Thomas and Halim[19], defined the symmetric Toeplitz determinant Tj(h) for ¢ > 1 as:

ap ap+1 0 Apgn—1
ap+1 Gpy2 v Ap+n
Tn(ﬁ> = : . : . (3)
apitn—1 Optn - Opp2n—2-

In Geometric Function Theory (GFT), various subclasses of S have been studied by many researchers.
The study of univalent function theory dates back as far as twentieth century with many results obtained
and the study is still on till date.

The following assertions are true; for Y(&) = & + 322, anc™;  Y'(&) = 1+ Y32, haye 1

Y _ | N et
—— =1+ anf
C

and
Tl(f) [Téf)]a—l — 1y Zﬁahgﬁ—l . {1 + Zaﬁfﬁ_l}a_l
h=2 =2
2
= 1t (at Dasz+ [(a+2)ay + 2=
+ = Z ’ [(a — 1) (e — 2)a3 + 6as + (o — 1)azas]&?
+ (a—1)[6asaz +as+ 04?—2(2@&4 +a3) + (a— 2)(a - 1)a%a3
+ (04—2)(04—3)(3a3_1)a§+3a§]£4—|—... (4)
Again,

_ 1 L3, 1 5 17
G(f)_1+2£ 24£ +240§ 403205 T

(the series modified sigmoid function, Fadipe-Joseph et al. [4] and Ezeafulukwe et al. [3])
w(€) = c1€ + ca€® + e384+ .., £ €n
w3(&) = 33 4+ 3cTcal + (2¢3 e + 3e1c3)E + ..
w’(€) = 3 + .

So that

1
240

17

(W(&)° — 5 (W(E) + .

(w()* + 40320

Gw(€) =1+ Ju(e) - 5
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After some mathematical substitutions and further simplifications, we obtain that

G(w(f)):1+021£+022§2+(63_ci’)§3+(C4_C%CQ

5~ o4 5 8)£4+... (5)

Now, let us give a definition of a class of Bazilevic functions related to the modified sigmoid function

in the unit disc A .

Definition 1.1. Let T € S be given by (1). For a >0 and § € A, we define the class M, (&) consisting

of functions Y that are analytic in the unit disk A and satisfy the following subordination condition:

()

* () = {T es: 19 T

SEGI 0
where h € N and G(€) is a modified sigmoid function.

Lemma 1.1 (Jahangiri [0]). Let p € P and suppose p(€) = 1+ c1& + ca€? + 363+ ---. Then,

2
<2 lal

2
1
‘CQ 2 | = 2

Lemma 1.2 (Duren [!], Marjono [12]). Let p € P be analytic in A, and suppose

p)=1+> pig", heN
h=1

Then,
Ips| < 2.

This result is known as the Carathéodory-Toeplitz inequality, particularly for the extremal function p(§) =
1+¢

1-&
Lemma 1.3 (Shi et al. [3]). Let P denote the family of all functions p that are analytic in U with
R(p(§)) > 0 and represented as

p&) =1+ e, ¢en.
h=1

Then the following inequalities hold:

o eyl <2 for h2>1;

o |chik — pepck| <2 for 0<pu<1;

o |cmen —ckey| <4 for m4+h=k+1;

. ‘CﬁJ’,Qk - MCﬁCi‘ <2(1—=2u) for peR;
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2 2
02_% §2_|Cl‘ 5

b 2

e For any complex number A,
e — Ac| < 2max{1, [2A — 1|}

Lemma 1.4 (Libera [9]). For p € P, there exist complex numbers x and ¢ with |x| <1 and |(| <1 such
that
29 =3 +x(d+c2),

dez =3 +2(4 — )t +2(4 — (A — |z]2)¢.

2 Main Results
Theorem 2.1. Let T € M} ;(§) be given by (1). Then:

1
(i) |az| < ax1 @ > 0;

a3+3a2+8a—|—1_
2+ 1)2(a+2)’

o +Ta—4
2(a+1)2(a+2)

(i) |as| <

(i13) |as] <

Proof. Equating coefficients in (4) and (5), we obtain that

c
(a+1)ag = b
2
which implies that
C1
2= 1)
by Lemma (1.2), we obtain that
1
<
ja2] < a+1
Also,
2
-3 6
(a+2)a3+(a ot )a%*cl,
2 2
that is

) c3(a? — 3a +6)
a+2 8la+2)(a+1)?
simplifying and applying Lemma (1.2) gives

az =

o +3a2+8a+1

o] < S a2

Earthline J. Math. Sci. Vol. 15 No. 4 (2025), 639-647



644 Ezugorie Obiageri M., Ishiaku Z. and Fadipe-Joseph Olubunmi A.

We also have from (4) and (5) that

C *Cg
a4=é M—(a—n[(am)(g

3 c a?+Ta—4
(a1+1))+2(ai1) (at 1) it

simplifying and using Lemma (1.3), we have

a2+ T7a—4

|as| < 2ot 1)2(at2)

Corollary 2.2. Let T € M;;h(g) be given by (1). Then, for a = 1, we have

aal < 5 sl < 22 jau < =
@l=5 1al=5p 1= gs

Theorem 2.3. Let T € M} ;(§) be given by (1). Then

a* + 1402 + 4102 — 56a + 16

Hy(2) < .
2(2) < 4% 1 3205 + 10404 + 18403 + 16402 + 80a + 16

Proof. Using the ideas first developed in (4) and (5) above, we have that

c1 1[12C3—ci” c a2+7a—4H_< a? +Ta—4 )2
2( Iz

Hy(2) = —a? - —(a+1) [(a—2
2(2) =l aslorm 6 e v ) OO 50D e a® +4a? + 5a + 2

Applying Lemma (1.4), we have that

Hy(2) = ci(cf +2(4 — ez —a(d — )2 +24 =)L — |2[)¢P) (o —2)cf
S 2(c + 1) (240 + 18) 2(48a 4 48)
A(a® 4+ Ta —4) ot + 1402 + 4102 — 560 + 16

12(a+1)2  4ab + 3205 + 1840 + 18403 + 16402 + 80 + 16

Noting that hs(2) is rotationally invariant and writing ¢; = ¢, such that 0 < ¢ < 2, we have

_ 3c1(c3 +2(4—A)err —e1(4— A2 +2(4 — ) (1 — |z2]2)¢?) ~ (a— 2)ci

Hj(2) 2(c + 1)(24a + 18) 2(480 + 48)

A(a? +Ta —4) ot + 1403 + 4102 — 56a + 16
12(a + 1)2 408 + 3205 + 184t + 184a3 + 164a2 + 80 + 16
Arbitrarily choosing ¢ = 0,

o + 1402 + 4102 — 560 + 16 )

Hy(2) = —(
2(2) 406 1 3205 + 1840t + 18403 + 16402 + 80a + 16

So,

Hy(2) = | 2 < ot + 1403 + 41a? — 56a + 16
= (a4 — Q .
2 204 081 = 406 £ 3205 + 104a? + 18403 + 16402 + 80ar + 16
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Theorem 2.4. Let Y = T(&) = £+ Y 2 apll € M}, (€). Then, lag — pa3| < 0%_2 4 3a—a?—68ua—16u

2(a+2)(a+1)2
Proof. Using ag and a3 from (4) and Lemma (1.2), we have
9 c2 c(a? — 3a +6) c
|CL3—/J,CL2|:‘ - 7 M 2‘
a+2 8a+2)(a+1) 4(a+1)
‘ o +2( 3a—a?—6 U )‘
= [|—— C —_
a+2 \8a+2)(a+1)2 4(a+1)2
3a—a% -6
o a2l < |ca 2 _ H 8
’ad MCL2| = a+2 + |Cl| 8(a+2)(a+ 1)2 4(a+ 1)2 ( )
Application of Lemma (1.3) in (8), the result follows. O

Theorem 2.5. For T € M, (£),a >0, we have Ty(1) = |af — a3| < 1.

Proof. The second Toeplitz determinant T5(1) for a function T €  of the form (1) is given by

2
ay as :(a%—a%):'1—4( 1

L) = Ha+17

. 9)

az a1

2
Observe that (1 — 4(5*)2) >0, since 0 < ¢q <2, and a > 0. So, we have

2
C
Tr(1) =1~— m = ¢(c1),
1) = ——2 g ¢ e[0,2], a0
4o+ 1)2 o

Observe that p(cq) is a monotone decreasing function, so the maximum value is ¢(0) = 1. The boundary

inequality is sharp for ¢; = 0. Hence, the proof. O
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