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Abstract

In this article, we present an extension to the Hardy-Hilbert integral inequality. This extension
incorporates a multivariate parametric power-ratio function. The original formulation of the inequality
is also included, along with a correction.

1 Introduction

The celebrated Hardy-Hilbert integral inequality, popularized in the classical work of Hardy, Littlewood,
and Pólya [1], plays a fundamental role in real analysis. It provides a sharp upper bound for a bilinear
form involving two nonnegative functions and a singular kernel function of the following type:

k(x, y) =
1

x+ y
.

A detailed statement of this inequality is given below. Let p > 1, q such that 1/p + 1/q = 1 and
f, g : (0,∞) → (0,∞). Then, we have∫ ∞

0

∫ ∞

0

f(x)g(y)

x+ y
dxdy ≤ π

sin(π/p)

(∫ ∞

0
fp(x)dx

)1/p(∫ ∞

0
gq(y)dy

)1/q

,

provided that the integrals of the upper bound converge. Here, the constant

σ =
π

sin(π/p)

is the best possible, in the sense that it cannot be replaced by a smaller constant independent of f and g.
Assuming that the integrals in the upper bound converge ensures that the double integral on the left-hand
side is finite, thereby providing a well-defined inequality. The Hardy-Hilbert integral inequality can be
seen as a continuous version of the Hardy-Hilbert double series inequality and is closely related to classical
integral transforms and the theory of special functions. It has a wide range of applications in harmonic
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analysis, interpolation theory and the study of function spaces. It also plays a significant role in operator
theory and the theory of integral transforms. Furthermore, it is involved in investigating sharp constants
in functional inequalities and is connected to partial differential equations and mathematical physics.

There are numerous variants and extensions of the Hardy-Hilbert integral inequality. For a
comprehensive overview, we refer to the monograph [3] and the survey [2]. In this article, we focus on a
significant yet under-studied result proposed in [5]. This result establishes an inequality that is similar
in spirit to the Hardy-Hilbert integral inequality, but involving multiple integrals, a more sophisticated
functional structure, numerous adjustable parameters and the beta function. This result is stated below.

Theorem 1.1. [5, Main result] Let n ∈ N\{0, 1}, p > 1, q such that 1/p+1/q = 1, for any i = 1, . . . , n,
fi : (0,∞) → (0,∞), ai > 0, and, for any r = 1, . . . , n,

λr+1 = (ar+1 − 1)(1− q),

Υr+1 =
n∏

j=r+1

B

aj , λ−
n∑

i=j

ai

 ,

where B(a, b) denotes the beta function, which is defined by the following two integral representations:

B(a, b) =

∫ 1

0
ta−1(1− t)b−1dt =

∫ ∞

0

ta−1

(1 + t)a+b
dt,

and λ such that

λ >
n∑

i=r+1

ai.

Then, we have
∫ ∞

0
. . .

∫ ∞

0

f1(x1) . . . fn(xn)

(x1 + . . .+ xn)λ
dx1 . . . dxn

Υr+1

∫∞
0 . . .

∫∞
0 fp

1 (x1) . . . f
p
r (xr)dx1 . . . dxr


q

≤

∫ ∞

0
. . .

∫ ∞

0

(x1 + . . .+ xr)
∑n

i=r+1 ai−λx
λr+1

r+1 f q
r+1(xr+1) . . . x

λn
n f q

n(xn)

(x1 + . . .+ xn)λ
dx1 . . . dxn

Υr+1

∫∞
0 . . .

∫∞
0 fp

1 (x1) . . . f
p
r (xr)dx1 . . . dxr

,

provided that the integrals of the upper bound converge.

Despite its mathematical interest and originality, this result has not received much attention in the
literature. The only related work is found in [4], where it has been extended to different integration
domains and adjustable exponent parameters have been included.

In this article, we contribute to this line of research in two directions, as described below.
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(i) We propose a functional extension of Theorem 1.1 by incorporating the following multivariate function:(
xr+1

x1 + · · ·+ xr

)βr+1
(

xr+2

x1 + · · ·+ xr+1

)βr+2

· · ·
(

xn
x1 + · · ·+ xn−1

)βn

,

where, for any i = 1, . . . , n, βi ≥ 0. It is clear that the main result of [5] corresponds to the particular
case

βr+1 = βr+2 = · · · = βn = 0.

Although the incorporation of this function has a moderate effect on the upper bound, it significantly
enriches the structure of the inequality.

(ii) We have identified and corrected a technical omission in [5, Main result]; a crucial exponent term “q−1”
is missing from both the statement and the proof. In doing so, we are revisiting this published result.

The remainder of the article is organized as follows: Section 2 presents the detailed statement and proof
of the new result. Section 3 highlights the correction to be made in Theorem 1.1. Several applications are
discussed in Section 4. Finally, Section 5 contains concluding remarks and an outlook on future research
directions.

2 Main Result

Our main result is given below, followed by the corresponding proof.

Theorem 2.1. Let n ∈ N \ {0, 1}, p > 1, q such that 1/p+1/q = 1, for any i = 1, . . . , n, fi : (0,∞) →
(0,∞), ai > 0, βi ≥ 0 and, for any r = 1, . . . , n,

λr+1 = (ar+1 − 1)(1− q),

Ωr+1 =
n∏

j=r+1

B

aj + βjp, λ−
n∑

i=j

ai − βjp

 ,

and λ such that

λ >

n∑
i=r+1

ai + βr+1p.

Then, we have
∫ ∞

0
. . .

∫ ∞

0

f1(x1) . . . fn(xn)

(x1 + . . .+ xn)λ

(
xr+1

x1 + . . .+ xr

)βr+1

. . .

(
xn

x1 + . . .+ xn−1

)βn

dx1 . . . dxn

Ωr+1

∫∞
0 . . .

∫∞
0 fp

1 (x1) . . . f
p
r (xr)dx1 . . . dxr


q

≤

∫ ∞

0
. . .

∫ ∞

0

(x1 + . . .+ xr)
(
∑n

i=r+1 ai−λ)(q−1)x
λr+1

r+1 f q
r+1(xr+1) . . . x

λn
n f q

n(xn)

(x1 + . . .+ xn)λ
dx1 . . . dxn

Ωr+1

∫∞
0 . . .

∫∞
0 fp

1 (x1) . . . f
p
r (xr)dx1 . . . dxr

,

provided that the integrals of the upper bound converge.
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18 Christophe Chesneau

Proof of Theorem 2.1. Using the Fubini-Tonelli integral theorem, we can write∫ ∞

0
. . .

∫ ∞

0

f1(x1) . . . fn(xn)

(x1 + . . .+ xn)λ

(
xr+1

x1 + . . .+ xr

)βr+1

. . .

(
xn

x1 + . . .+ xn−1

)βn

dx1 . . . dxn

=

∫ ∞

0
. . .

∫ ∞

0
f1(x1) . . . fr(xr)I(x1, . . . , xr)dx1 . . . dxr, (1)

where

I(x1, . . . , xr)

=

∫ ∞

0
. . .

∫ ∞

0

fr+1(xr+1) . . . fn(xn)

(x1 + . . .+ xn)λ

(
xr+1

x1 + . . .+ xr

)βr+1

. . .

(
xn

x1 + . . .+ xn−1

)βn

dxr+1 . . . dxn.

Applying the Hölder integral inequality, we get∫ ∞

0
. . .

∫ ∞

0
f1(x1) . . . fr(xr)I(x1, . . . , xr)dx1 . . . dxr

≤
(∫ ∞

0
. . .

∫ ∞

0
fp
1 (x1) . . . f

p
r (xr)dx1 . . . dxr

)1/p

×
(∫ ∞

0
. . .

∫ ∞

0
Iq(x1, . . . , xr)dx1 . . . dxr

)1/q

. (2)

Using a suitable decomposition of the integrand and applying the Hölder integral inequality, we obtain

I(x1, . . . , xr)

=

∫ ∞

0
. . .

∫ ∞

0

x
λr+1/q
r+1 fr+1(xr+1) . . . x

λn/q
n fn(xn)

(x1 + . . .+ xn)λ/q
x
−λr+1/q
r+1 . . . x

−λn/q
n

(x1 + . . .+ xn)λ/p

×
(

xr+1

x1 + . . .+ xr

)βr+1

. . .

(
xn

x1 + . . .+ xn−1

)βn

dxr+1 . . . dxn

≤

(∫ ∞

0
. . .

∫ ∞

0

x
λr+1

r+1 f q
r+1(xr+1) . . . x

λn
n f q

n(xn)

(x1 + . . .+ xn)λ
dxr+1 . . . dxn

)1/q

×

(∫ ∞

0
. . .

∫ ∞

0

x
−λr+1/(q−1)
r+1 . . . x

−λn/(q−1)
n

(x1 + . . .+ xn)λ

(
xr+1

x1 + . . .+ xr

)βr+1p

. . .

×
(

xn
x1 + . . .+ xn−1

)βnp

dxr+1 . . . dxn

)1/p

=

(∫ ∞

0
. . .

∫ ∞

0

x
λr+1

r+1 f q
r+1(xr+1) . . . x

λn
n f q

n(xn)

(x1 + . . .+ xn)λ
dxr+1 . . . dxn

)1/q

× J1/p(x1, . . . , xr), (3)

where

J(x1, . . . , xr)

=

∫ ∞

0
. . .

∫ ∞

0

x
ar+1−1
r+1 . . . xan−1

n

(x1 + . . .+ xn)λ

(
xr+1

x1 + . . .+ xr

)βr+1p

. . .

(
xn

x1 + . . .+ xn−1

)βnp

dxr+1 . . . dxn.
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By the Fubini-Tonelli integral theorem, we now isolate the last variable xn as follows:

J(x1, . . . , xr)

=

∫ ∞

0
. . .

∫ ∞

0

x
ar+1−1
r+1 . . . x

an−1−1
n−1

(x1 + . . .+ xn−1)λ−an

(
xr+1

x1 + . . .+ xr

)βr+1p

. . .

×
(

xn−1

x1 + . . .+ xn−2

)βn−1p

K(x1, . . . , xn−1)dxr+1 . . . dxn−1, (4)

where

K(x1, . . . , xn−1) =

∫ ∞

0

xan−1
n (x1 + . . .+ xn−1)

λ−an

(x1 + . . .+ xn)λ

(
xn

x1 + . . .+ xn−1

)βnp

dxn.

Performing the change of variables

t =
xn

x1 + . . .+ xn−1

yields

K(x1, . . . , xn−1)

=

∫ ∞

0

(
xn

x1 + . . .+ xn−1

)an+βnp−1

(
1 +

xn
x1 + . . .+ xn−1

)λ
× 1

x1 + . . . xn−1
dxn

=

∫ ∞

0

tan+βnp−1

(1 + t)an+βnp+(λ−(an+βnp))
dt = B (an + βnp, λ− an − βnp) . (5)

Combining Equations (5) and (4), we get

J(x1, . . . , xr) = B (an + βnp, λ− an − βnp)

×
∫ ∞

0
. . .

∫ ∞

0

x
ar+1−1
r+1 . . . x

an−1−1
n−1

(x1 + . . .+ xn−1)λ−an

(
xr+1

x1 + . . .+ xr

)βr+1p

. . .

×
(

xn−1

x1 + . . .+ xn−2

)βn−1p

dxr+1 . . . dxn−1.

Based on this new expression of J(x1, . . . , xr) and the previous one, we can proceed inductively to
obtain

J(x1, . . . , xr) =

n−1∏
j=r+1

B

aj + βjp, λ−
n∑

i=j

ai − βjp


× (x1 + . . .+ xr)

∑n
i=r+1 ai−λ

= Ωr+1(x1 + . . .+ xr)
∑n

i=r+1 ai−λ. (6)
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Combining Equations (6) and (3), we get

I(x1, . . . , xr)

≤

(∫ ∞

0
. . .

∫ ∞

0

x
λr+1

r+1 f q
r+1(xr+1) . . . x

λn
n f q

n(xn)

(x1 + . . .+ xn)λ
dxr+1 . . . dxn

)1/q

× Ω
1/p
r+1(x1 + . . .+ xr)

(
∑n

i=r+1 ai−λ)/p. (7)

Combining Equations (7), (1) and (2), we derive∫ ∞

0
. . .

∫ ∞

0

f1(x1) . . . fn(xn)

(x1 + . . .+ xn)λ

(
xr+1

x1 + . . .+ xr

)βr+1

. . .

(
xn

x1 + . . .+ xn−1

)βn

dx1 . . . dxn

≤ Ω
1/p
r+1

(∫ ∞

0
. . .

∫ ∞

0
fp
1 (x1) . . . f

p
r (xr)dx1 . . . dxr

)1/p

×

(∫ ∞

0
. . .

∫ ∞

0

(x1 + . . .+ xr)
(
∑n

i=r+1 ai−λ)(q−1)x
λr+1

r+1 f q
r+1(xr+1) . . . x

λn
n f q

n(xn)

(x1 + . . .+ xn)λ
dx1 . . . dxn

)1/q

.

Raising at the exponent q, this can be rearranged as follows:
∫ ∞

0
. . .

∫ ∞

0

f1(x1) . . . fn(xn)

(x1 + . . .+ xn)λ

(
xr+1

x1 + . . .+ xr

)βr+1

. . .

(
xn

x1 + . . .+ xn−1

)βn

dx1 . . . dxn

Ωr+1

∫∞
0 . . .

∫∞
0 fp

1 (x1) . . . f
p
r (xr)dx1 . . . dxr


q

≤

∫ ∞

0
. . .

∫ ∞

0

(x1 + . . .+ xr)
(
∑n

i=r+1 ai−λ)(q−1)x
λr+1

r+1 f q
r+1(xr+1) . . . x

λn
n f q

n(xn)

(x1 + . . .+ xn)λ
dx1 . . . dxn

Ωr+1

∫∞
0 . . .

∫∞
0 fp

1 (x1) . . . f
p
r (xr)dx1 . . . dxr

.

This concludes the proof of Theorem 2.1. 2

Note that the adjustable parameters β1, . . . , βn appear only in the constant factor Ωr+1.

It is also worth emphasizing that the upper bounds given in Theorems 2.1 and 1.1 are not identical, a
distinction that will be clarified in the subsequent section.

3 A Correction

As outlined in the introduction, it appears that an exponent term “q − 1” was inadvertently omitted in
both the statement and the proof of [5, Main Theorem]. To be more precise, based on the formulation in
Theorem 1.1, the following term:∫ ∞

0
. . .

∫ ∞

0

(x1 + . . .+ xr)
∑n

i=r+1 ai−λx
λr+1

r+1 f q
r+1(xr+1) . . . x

λn
n f q

n(xn)

(x1 + . . .+ xn)λ
dx1 . . . dxn

Υr+1

∫∞
0 . . .

∫∞
0 fp

1 (x1) . . . f
p
r (xr)dx1 . . . dxr

,
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must be corrected as follows, with the additional term put in color:

∫ ∞

0
. . .

∫ ∞

0

(x1 + . . .+ xr)
(
∑n

i=r+1 ai−λ)(q−1)x
λr+1

r+1 f q
r+1(xr+1) . . . x

λn
n f q

n(xn)

(x1 + . . .+ xn)λ
dx1 . . . dxn

Υr+1

∫∞
0 . . .

∫∞
0 fp

1 (x1) . . . f
p
r (xr)dx1 . . . dxr

.

Therefore, Theorem 2.1, besides extending the result, also provides a valuable correction.

4 Applications

Several applications of Theorem 2.1, corresponding to specific choices of the parameters n and r, are
presented below.

If we take n = 2 and r = 1, then we obtain


∫ ∞

0

∫ ∞

0

f1(x1)f2(x2)

(x1 + x2)λ

(
x2
x1

)β2

dx1dx2

Ω2

∫∞
0 fp

1 (x1)dx1


q

≤

∫ ∞

0

∫ ∞

0

x
(a2−λ)(q−1)
1 xλ2

2 f q
2 (x2)

(x1 + x2)λ
dx1dx2

Ω2

∫∞
0 fp

1 (x1)dx1
,

where

Ω2 = B (a2 + β2p, λ− a2 − β2p) .

For the particular case β2 = 0, this inequality reduces to [5, Equation (7)], but with the mentioned
correction (and the presence of f q

2 (x2) which is also omitted in [5, Equation (7)]).

If we take n = 3 and r = 1, then we get


∫ ∞

0

∫ ∞

0

∫ ∞

0

f1(x1)f2(x2)f3(x3)

(x1 + x2 + x3)λ

(
x2
x1

)β2
(

x3
x1 + x2

)β3

dx1dx2dx3

Ω2

∫∞
0 fp

1 (x1)dx1


q

≤

∫ ∞

0

∫ ∞

0

∫ ∞

0

x
(a2+a3−λ)(q−1)
1 xλ2

2 f q
2 (x2)x

λ3
3 f q

3 (x3)

(x1 + x2 + x3)λ
dx1dx2dx3

Ω2

∫∞
0 fp

1 (x1)dx1
.

For the particular case β2 = β3 = 0, this inequality reduces to [5, Equation (8)], but with the mentioned
correction.
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If we take n = 3 and r = 2, then we have
∫ ∞

0

∫ ∞

0

∫ ∞

0

f1(x1)f2(x2)f3(x3)

(x1 + x2 + x3)λ

(
x3

x1 + x2

)β3

dx1dx2dx3

Ω3

∫∞
0

∫∞
0 fp

1 (x1)f
p
2 (x2)dx1dx2


q

≤

∫ ∞

0

∫ ∞

0

∫ ∞

0

(x1 + x2)
(a3−λ)(q−1)xλ2

2 f q
2 (x2)x

λ3
3 f q

3 (x3)

(x1 + x2 + x3)λ
dx1dx2dx3

Ω3

∫∞
0

∫∞
0 fp

1 (x1)f
p
2 (x2)dx1dx2

,

where

Ω3 = B (a3 + β3p, λ− a3 − β3p) .

For the particular case β3 = 0, this inequality reduces to [5, Equation (9)], but with the mentioned
correction.

5 Conclusion

Building on [5, Main result], we establish a new general inequality in the spirit of the Hardy–Hilbert
integral inequality. This extension incorporates a multivariate parametric power–ratio function, thereby
broadening the scope of the classical formulation. At the same time, our analysis reveals the necessity of
correcting the original statement by adding a missing exponent term. The contributions of this work are
therefore twofold: an extension of the inequality to a more general framework and a rigorous correction
to the previously stated result.

Potential future research directions include exploring weighted versions of the inequality, studying
analogous results on bounded or discrete domains, and investigating possible applications to harmonic
analysis, operator theory and inequalities in higher dimensions.
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