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Abstract

This paper considers a new fourth-order frequency-dependent symmetric hybrid linear multistep method
for oscillatory second-order differential equations. The proposed method achieves minimal phase-lag
and bounded amplitude error, which accurately reproduces orbital trajectories, and requires fewer
function evaluations. Numerical experiment confirms improved efficiency, accuracy, and long-term
stability over some existing methods in the literature.

1 Introduction

Second-order ordinary differential equations (ODEs) in which the first derivative is explicitly absent arise
frequently in many areas of science and engineering. A general form of such equations is given by

𝑦′′ = 𝑓 (𝑥, 𝑦(𝑥)), 𝑥 ∈ [𝑥0, 𝑋],

𝑦(𝑥0) = 𝑦0,

𝑦′(𝑥0) = 𝑦′0,

(1.1)

where 𝑓 : R𝑑 → R𝑑 is assumed to be sufficiently smooth to ensure the existence and uniqueness of the
solution. In many practical applications, solutions of (1.1) exhibit oscillatory behavior, as is common in
orbital dynamics, quantum mechanics, and wave propagation [1–4].

Classical linear multistep methods have long been applied to problems of the form (1.1), but their
performance is fundamentally limited for oscillatory solutions. Lambert and Watson [1] showed that no
constant-coefficient P-stable multistep method can achieve an algebraic order higher than two, regardless
of the step size. This limitation has spurred the development of extended frameworks that go beyond
classical approaches. Among these, hybrid multistage-multistep methods [2, 5–8] have proven particularly
effective. By introducing additional free parameters, these methods allow for higher-order accuracy while
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preserving desirable stability properties, making them well-suited for long-term integration of oscillatory
problems.

A key challenge in numerical integration of oscillatory ODEs is the control of phase errors. Brusa
and Nigro [9] introduced the concept of phase-lag, which quantifies the difference in oscillation frequency
between the exact and numerical solutions. Subsequent studies formalized the notion of phase-lag order
[10, 11] and developed methods aimed at minimizing or eliminating phase-lag at selected frequencies. For
problems exhibiting periodic or nearly periodic behavior, controlling phase-lag is often more important
than increasing the algebraic order of accuracy, as dispersion errors can dominate the global solution over
long integration intervals [10].

Another important consideration is the symmetry of the numerical scheme. Symmetric formulas tend
to preserve qualitative properties of the exact solution, especially in Hamiltonian or near-Hamiltonian
systems. They suppress secular growth of invariants and maintain bounded parasitic oscillations over
long time integrations [7, 12, 13]. By combining high algebraic order, phase-lag control, and symmetry,
hybrid methods achieve both stability and accuracy, making them a powerful tool for solving oscillatory
second-order ODEs.

In this work, we aim to develop and analyze a new frequency-dependent symmetric hybrid
linear multistep method with enhanced phase properties, capable of accurately integrating oscillatory
second-order differential equations while minimizing computational effort.

2 Preliminary Results

The k-step LMMs for solving problem (1.1) numerically is given by

𝑘∑︁
𝑗=0

𝛼 𝑗 𝑦𝑛+ 𝑗 = ℎ2
𝑘∑︁
𝑗=0

𝛽 𝑗 𝑓𝑛+ 𝑗 , 𝑘 ≥ 2 (2.1)

where it is assumed that 𝛼𝑘 = 1 and 𝛽𝑘 ≠ 1. For simplicity, the LMM (2.1) can be written as 𝜌(𝐸)𝑦𝑛 =

ℎ2𝜎𝐸 𝑓𝑛, where the shift operator is 𝐸 𝑗 𝑦𝑛 = 𝑦𝑛 + 𝑗 , 𝑗 ∈ Z. The first and second characteristic polynomials
are 𝜌(𝜉) = ∑𝑘

𝑗=0 𝛼 𝑗𝜉
𝑗 and 𝜎(𝜉) = ∑𝑘

𝑗=0 𝛽 𝑗𝜉
𝑗 , respectively.

To bypass the order barrier imposed on LMMs (2.1) [1, 14], Hybrid methods incorporating additional
off-step points have been introduced to construct high order hybrid methods for the direct numerical
solution of (1.1). For such methods, see [5, 15, 16] and the references therein.

Let the corresponding difference operator for the LMM (2.1) be defined by

𝐿 [𝑦(𝑥); ℎ] =
𝑘∑︁
𝑗=0

[
𝛼 𝑗 𝑦(𝑥 + 𝑗 ℎ) − ℎ2𝛽 𝑗 𝑦

′′(𝑥 + 𝑗 ℎ)
]
, (2.2)
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where 𝑦(𝑥) is an arbitrary continuously differentiable function on the the interval [𝑎, 𝑏]. Without loss of
generality, the Taylor expansion of 𝑦(𝑥) about the point 𝑥 yields

𝑘∑︁
𝑗=0

[
𝛼 𝑗 𝑦(𝑥 + 𝑗 ℎ) − ℎ2𝛽 𝑗 𝑦

′′(𝑥 + 𝑗 ℎ)
]
= 𝐶𝑝+2ℎ

𝑝+2𝑦 (𝑝+2) (𝑥) +𝑂 (ℎ (𝑝+3) ), (2.3)

with an error constant given by

𝐶𝑞 =
1

𝑞!

𝑘∑︁
𝑗=0

𝑗𝑞−2
(
𝑗2𝛼 𝑗 − 𝑞(𝑞 − 1)𝛽 𝑗

)
−

𝑘∑︁
𝑗=0

𝑗𝑞−2

(𝑞 − 2)! 𝛽 𝑗 , 𝑞 > 2. (2.4)

From (2.3), 𝐶𝑝+2 is the error constant, 𝐶𝑝+2ℎ𝑝+2𝑦 (𝑝+2) (𝑥) represent the LTE at the point 𝑥𝑛 and 𝑝 is the
algebraic order of the method. The application of method (2.1) on the scalar test equation (2.5) (see [1]),

𝑦′′ + 𝜆2𝑦 = 0, 𝜆 ∈ R (2.5)

will yield the finite difference equation of the form∑︁
𝑟=0

𝐴𝑟 (𝜉2)𝑦𝑛+𝑟 = 0, 𝜉 = 𝑖𝜆ℎ, (2.6)

where 𝐴𝑟 (𝜉2) are polynomials in 𝜉2. It follows that the characteristic equation is

Φ(𝑅, 𝜉) =
𝑘∑︁
𝑗=0

𝐴𝑟 (𝜉2)𝑅2, 𝑘 > 1. (2.7)

which motivates the following definitions

Definition 2.1. (Zero-stability) The method (2.1) is zero-stable if the roots of the first charateristic
polynomial has modulus less than or equal to one, and if every root of modulus one has multiplicity not
greater than two.

Definition 2.2. (Consistency) The LMM (2.1) is consistent if it has order 𝑝 ≥ 1.

Definition 2.3. (Convergence) The LMM (2.1) is convergent if it is zero-stable and consistent.

Definition 2.4. (Interval of Periodicity) The LMM (2.1) is said to have periodicity interval (0, 𝐻2) if
for all 𝐻2 ∈ (0, 𝐻2), the roots of the characteristic polynomial have at most two compex conjugate roots of
modulus one while other roots are less than or equal to one.

Definition 2.5. (P-stability) The LMM (2.1) is p-stable if (0, 𝐻2) = (0,∞).

Definition 2.6. (Phase-lag) For any symmetric multistep methods, the phase-lag (frequency distortion)
of order 𝑞 is given by

𝑡 (𝑧) = 𝑧 − 𝜃 (𝑧) = 𝐶𝑧𝑞+1 +𝑂 (𝑧𝑞+2), (2.8)

where 𝐶 is the phase lag constant and 𝑞 is the phase lag order.
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3 Derivation of Method

For the numerical integration of (1.1) we consider the symmetric hybrid linear multistep method,

𝑦𝑛+1 − 2𝑦𝑛 + 𝑦𝑛−1 = ℎ2 [𝛽0(𝑢) 𝑓𝑛 + 𝛽1(𝑢) ( 𝑓𝑛+1 + 𝑓𝑛−1)] + ℎ2𝛽𝑐1 (𝑢) ( 𝑓𝑛+𝑐1 + 𝑓𝑛−𝑐1), (3.1)

whose corresponding hybrid methods are given by

𝑦𝑛±𝑐1 = 𝛼2(𝑢)𝑦𝑛+1 + 𝛼1(𝑢)𝑦𝑛 + 𝛼0(𝑢)𝑦𝑛−1 + ℎ2(𝜙0(𝑢) 𝑓𝑛 + 𝜙1(𝑢) 𝑓𝑛+1). (3.2)

Let 𝑢 = 𝜔ℎ. The coefficients 𝛽 𝑗 (𝑢), 𝛽𝑐1 (𝑢), 𝛼𝑙 (𝑢), and 𝜙 𝑗 (𝑢), with 𝑗 = 0, 1 and 𝑙 = 0, 1, 2, are
unknown functions of the frequency 𝑢 and the stepsize ℎ. The numerical solution at shifted nodes is
denoted by 𝑦𝑛±𝑐1 ≈ 𝑦(𝑥𝑛±𝑐1) and the corresponding function evaluations are 𝑓𝑛±𝑐1 = 𝑓 (𝑥𝑛±𝑐1 , 𝑦𝑛±𝑐1), 𝑓𝑛± 𝑗 =
𝑓 (𝑥𝑛± 𝑗 , 𝑦𝑛± 𝑗), 𝑗 = 0, 1. Substituting the trigonometrically fitted basis function (3.3)

𝑈 (𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑠𝑖𝑛(𝑤𝑥) + 𝑎4𝑐𝑜𝑠(𝑤𝑥) (3.3)

and its second derivative (3.4)

𝑈′′(𝑥) = 2 − 𝑤2(𝑎1𝑠𝑖𝑛(𝑤𝑥) + 𝑎2𝑐𝑜𝑠(𝑤𝑥)) (3.4)

into the collocation equations allows us to solve for the unknown coefficients. Once determined,
these coefficients define a trigonometrically fitted hybrid collocation method that is consistent with the
underlying oscillatory problem. Now we assume that the interpolating basis function (3.3) coincides with
the exact solution at the point 𝑥𝑛± 𝑗 to get

𝑈 (𝑥𝑛± 𝑗) = 𝑦𝑛± 𝑗 , 𝑗 = 0, 1. (3.5)

Also, collocating (3.4) at 𝑥𝑛+𝑣1 , 𝑥𝑛± 𝑗 , 𝑗 = 0, 1 we obtain

𝑈′′(𝑥𝑛+𝑣1) = 𝑓𝑛+𝑣1 , 𝑈′′(𝑥𝑛± 𝑗) = 𝑓𝑛± 𝑗 , 𝑗 = 0, 1. (3.6)

Observe that (3.5) and (3.6) result to a system of five equations with five unknowns imposed by symmetry.
Solving this resulting system of equation for 𝑎 𝑗 , 𝑗 = 0(1)4 and substituting the resulting values of 𝑎 𝑗 ’s with
𝑥 = 𝑥𝑛+1 + 𝑡ℎ (without loss of generality, we set 𝑥𝑛 = 0 so that 𝑥 = ℎ + ℎ𝑡 into (3.3), we obtain a continuous
hybrid method with continuous coefficients which is then used to generate the output method and its
corresponding hybrid methods. It follows that for 𝑡 = 1 in the continuous method and by carefully
choosing 𝑣1 =

1
2 we obtain
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

𝛽0(𝑢) =
(
𝑢2 + 2 cos(𝑢) − 2

)
sin

(
𝑢
2

)
𝑢2

(
sin

(
𝑢
2

)
− sin

(
3𝑢
2

)
+ sin(𝑢)

) ,
𝛽1(𝑢) =

4 sin2
(
𝑢
2

) (
sin

(
𝑢
2

)
+ sin(𝑢)

)
− 𝑢2 sin

(
3𝑢
2

)
𝑢2

(
sin

(
𝑢
2

)
− sin

(
3𝑢
2

)
+ sin(𝑢)

) ,

𝛽2(𝑢) =
sin(𝑢)

(
𝑢2 + 2 cos(𝑢) − 2

)
𝑢2

(
sin

(
𝑢
2

)
− sin

(
3𝑢
2

)
+ sin(𝑢)

) .
(3.7)

Similarly, for the hybrid pairs we let 𝑡 = [−1
2 ,

1
2 ] in the continuous scheme to obtain



𝜙0(𝑢) = −
(𝑢2 + 12) sin

(
𝑢
2

)
+ 4 sin

(
3𝑢
2

)
− 12 sin(𝑢)

8𝑢2
(
sin

(
𝑢
2

)
− sin

(
3𝑢
2

)
+ sin(𝑢)

) ,

𝜙1(𝑢) =
(𝑢2 + 4) sin

(
3𝑢
2

)
− 4 sin

(
𝑢
2

)
− 4 sin(𝑢)

8𝑢2
(
sin

(
𝑢
2

)
− sin

(
3𝑢
2

)
+ sin(𝑢)

)
𝛼̂0(𝑢) =

3𝑢2 cos
(
𝑢
2

)
+ 8 cos

(
𝑢
2

)
+ 4 cos(𝑢) − 12

8
(
𝑢2 cos

(
𝑢
2

)
+ 2 cos(𝑢) − 2

) ,

𝛼̂1(𝑢) =
3𝑢2 cos

(
𝑢
2

)
− 8 cos

(
𝑢
2

)
+ 8 cos(𝑢)

4
(
𝑢2 cos

(
𝑢
2

)
+ 2 cos(𝑢) − 2

) ,

𝛼̂2(𝑢) =
−𝑢2 cos

(
𝑢
2

)
+ 8 cos

(
𝑢
2

)
− 4 cos(𝑢) − 4

8
(
𝑢2 cos

(
𝑢
2

)
+ 2 cos(𝑢) − 2

) .

(3.8)

and 

𝜙0(𝑢) =
3
(
𝑢2 − 4

)
sin

(
𝑢
2

)
− 8 sin(0) + 4 sin

(
3𝑢
2

)
+ 8 sin

(
𝑢
2

)
− 4 sin(𝑢)

8𝑢2
(
sin

(
𝑢
2

)
− sin

(
3𝑢
2

)
+ sin(𝑢)

) ,

𝜙1(𝑢) =
−
(
3𝑢2 + 4

)
sin

(
3𝑢
2

)
+ 8 sin(0) + 12 sin

(
𝑢
2

)
− 8 sin

(
3𝑢
2

)
+ 12 sin(𝑢)

8𝑢2
(
sin

(
𝑢
2

)
− sin

(
3𝑢
2

)
+ sin(𝑢)

) ,

𝛼0(𝑢) =
−𝑢2 cos

(
𝑢
2

)
+ 8 cos

(
𝑢
2

)
− 4 cos 𝑢 − 4

8
(
𝑢2 cos

(
𝑢
2

)
+ 2 cos 𝑢 − 2

) ,

𝛼1(𝑢) =
3𝑢2 cos

(
𝑢
2

)
− 8 cos

(
𝑢
2

)
+ 8 cos 𝑢

4
(
𝑢2 cos

(
𝑢
2

)
+ 2 cos 𝑢 − 2

) ,

𝛼2(𝑢) =
3𝑢2 cos

(
𝑢
2

)
+ 8 cos

(
𝑢
2

)
+ 4 cos 𝑢 − 12

8
(
𝑢2 cos

(
𝑢
2

)
+ 2 cos 𝑢 − 2

) ,

(3.9)
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respectively. We observe that for small values of 𝑢, the above coefficients are subject to heavy cancellation;
hence, we employ the Taylor series expansion. See [17] and the references. Thus, the coefficients in (3.7),
(3.8) and (3.9) are respectively expressed as follows;

𝛽0 =
1

24
+ 17𝑢2

2160
+ 349𝑢4

725760
+ 2437𝑢6

87091200
+ 147527𝑢8

91968307200
+ 91958879𝑢10

1004293914624000
+ · · ·

𝛽1 =
7

12
+ 𝑢2

240
− 13𝑢4

241920
+ 𝑢6

9676800
− 13𝑢8

10218700800
− 1559𝑢10

334764638208000
+ · · ·

𝛽2 =
1

6
− 13𝑢2

1080
− 31𝑢4

72576
− 1223𝑢6

43545600
− 14741𝑢8

9196830720
− 45977101𝑢10

502146957312000
+ · · ·

whose local truncation error is 𝐿𝑇𝐸 = − 1
640

(
ℎ6𝑦 (6) (𝑥𝑛)

)
+ 𝑂 (ℎ8). The hybrid methods and their

corresponding local truncation errors are

𝜙0 = −
13

320
− 203𝑢2

69120
− 2021𝑢4

11612160
− 55901𝑢6

5573836800
− 5033𝑢8

6370099200
− 17482567𝑢10

224737099776000
+ · · ·

𝜙1 =
7

320
+ 𝑢2

7680
+ 𝑢4

774144
+ 𝑢6

88473600
+ 1181𝑢8

44590694400
+ 308767𝑢10

74912366592000
+ · · ·

𝛼̂0 =
63

160
− 11𝑢2

1280
+ 331𝑢4

1075200
− 791𝑢6

73728000
+ 1786537𝑢8

4768727040000
− 4923229𝑢10

381498163200000
+ · · ·

𝛼̂1 =
57

80
+ 11𝑢2

640
− 331𝑢4

537600
+ 791𝑢6

36864000
− 1786537𝑢8

2384363520000
+ 4923229𝑢10

190749081600000
+ · · ·

𝛼̂2 = −
17

160
− 11𝑢2

1280
+ 331𝑢4

1075200
− 791𝑢6

73728000
+ 1786537𝑢8

4768727040000
− 4923229𝑢10

381498163200000
+ · · ·

𝐿𝑇𝐸 = 5
768

(
ℎ5𝑦 (5) (𝑥𝑛)

)
+𝑂 (ℎ7)

𝜙0 =
7

320
− 𝑢2

480
+ 𝑢4

3840
− 𝑢6

645120
+ 𝑢8

18579456
− 𝑢10

689889024
+ 𝑢12

32011828352
· · · ,

𝜙1 = −
13

320
+ 𝑢2

480
− 𝑢4

3840
+ 𝑢6

645120
− 𝑢8

18579456
+ 𝑢10

689889024
− 𝑢12

32011828352
· · · ,

𝛼0 = −
17

160
− 𝑢2

480
+ 𝑢4

2304
− 7𝑢6

552960
+ 𝑢8

258048
− 13𝑢10

185794560
+ 23𝑢12

3632428800
· · · ,

𝛼1 =
57

80
− 𝑢2

160
+ 𝑢4

384
− 𝑢6

13824
+ 𝑢8

8257536
− 5𝑢10

185794560
+ 7𝑢12

5189184000
· · · ,

𝛼2 =
63

160
+ 𝑢2

248
− 𝑢4

1152
+ 𝑢6

55296
− 𝑢8

3317760
+ 𝑢10

258048000
− 𝑢12

25821120000
· · · .

(3.10)

𝐿𝑇𝐸 = − 5
768

(
ℎ5𝑦 (5) (𝑥𝑛)

)
+𝑂 (ℎ7)
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The behaviour of the coefficients are given in Figures (1), (2), and (3),

Figure 1: Logarithmic behaviour of 𝛽 coefficients versus 𝑢. Green and red zones indicate stable and risky
regions, respectively.

Figure 2: Logarithmic behaviour of 𝜙 and 𝛼̂ coefficients versus 𝑢.
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Figure 3: Logarithmic behaviour of 𝜙 and 𝛼 coefficients versus 𝑢.

4 Numerical Experiment and Discussion

In this section, we carry out a numerical experiment to illustrate the efficiency of the derived scheme.

4.1 Implementation Procedure

The implementation follows four main stages: initialization, prediction, correction, and update. At the
initialization stage, the first step value is obtained through a Taylor expansion based on the given initial
conditions and the right-hand side function 𝑓 (𝑡, 𝑦). The predictor stage employs 𝑦

(0)
𝑛+1 = 2𝑦𝑛 − 𝑦𝑛−1 +

ℎ2 𝑓 (𝑡𝑛, 𝑦𝑛), which provides a first approximation of the next step. The corrector stage refines this prediction
using a Newton iteration process applied to the nonlinear residual equation 𝑅(𝑦𝑛+1) = 𝑦𝑛+1 − 2𝑦𝑛 + 𝑦𝑛−1 −
ℎ2

[
1
24 ( 𝑓𝑛+1 + 𝑓𝑛−1) + 7

12 𝑓𝑛 +
1
6 ( 𝑓𝑛+ 12 + 𝑓𝑛− 1

2
)
]
. The midpoint function evaluations 𝑓𝑛± 1

2
are approximated

using symmetric interpolations that depend on 𝑦𝑛+1. Convergence of the Newton iteration is controlled
by a prescribed tolerance of 10−12. The final update replaces (𝑦𝑛−1, 𝑦𝑛) by (𝑦𝑛, 𝑦𝑛+1), and the process is
repeated until the final time 𝑇 is reached. The steps are carefully illustrated below

http://www.earthlinepublishers.com
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Algorithm 1 Implementation Procedure of the Hybrid Method
Require: Step size ℎ, final time 𝑇 , initial values 𝑡0, 𝑦0, and right-hand side function 𝑓 (𝑡, 𝑦)
Ensure: Numerical solution {𝑦𝑛} for 𝑡𝑛 ∈ [𝑡0, 𝑇]

1: Step 1: Initialization
2: Compute the first approximation using a Taylor expansion:

𝑦1 = 𝑦0 + ℎ 𝑓 (𝑡0, 𝑦0) + ℎ2

2 𝑓𝑡 (𝑡0, 𝑦0) + O(ℎ3)

3: Set 𝑛← 1.
4: Step 2: Prediction
5: Predict 𝑦𝑛+1 using the explicit formula:

𝑦
(0)
𝑛+1 = 2𝑦𝑛 − 𝑦𝑛−1 + ℎ2 𝑓 (𝑡𝑛, 𝑦𝑛)

6: Step 3: Correction
7: repeat
8: Evaluate midpoint functions:

𝑓𝑛± 1
2
= 𝑓

(
𝑡𝑛 ± ℎ

2 ,
𝑦𝑛+𝑦 (𝑘)𝑛±1

2

)
9: Form the residual:

𝑅(𝑦 (𝑘 )
𝑛+1) = 𝑦

(𝑘 )
𝑛+1 − 2𝑦𝑛 + 𝑦𝑛−1 − ℎ2

[
1
24 ( 𝑓

(𝑘 )
𝑛+1 + 𝑓𝑛−1) + 7

12 𝑓𝑛 +
1
6 ( 𝑓

(𝑘 )
𝑛+ 12
+ 𝑓𝑛− 1

2
)
]

10: Update using Newton’s iteration:

𝑦
(𝑘+1)
𝑛+1 = 𝑦

(𝑘 )
𝑛+1 −

(
𝜕𝑅

𝜕𝑦𝑛+1

(
𝑦
(𝑘 )
𝑛+1

) )−1
𝑅(𝑦 (𝑘 )

𝑛+1)

11: until ∥𝑅(𝑦 (𝑘+1)
𝑛+1 )∥ < 10−12

12: Step 4: Update
13: Set 𝑦𝑛+1 ← 𝑦

(𝑘+1)
𝑛+1

14: Update indices: (𝑦𝑛−1, 𝑦𝑛) ← (𝑦𝑛, 𝑦𝑛+1)
15: Increment 𝑛← 𝑛 + 1
16: Step 5: Termination
17: Continue the iteration until 𝑡𝑛 ≥ 𝑇 .

4.2 Numerical Results

We consider the following orbital problem studied by Stiefel and Bettis [18]:

𝑦′′ = −𝑦 + 0.001𝑒𝑖𝑡 ,
𝑦(0) = 1, 𝑦′(0) = 0.9995𝑖, 𝑖2 = −1

(4.1)
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whose exact solution is given by
𝑦(𝑡) = 𝑢(𝑡) + 𝑣(𝑡),
𝑢(𝑡) = 𝑐𝑜𝑠(𝑡) + 0.0005𝑡 sin(𝑡),
𝑣(𝑡) = 𝑠𝑖𝑛(𝑡) − 0.0005𝑡 cos(𝑡)

(4.2)

representing a motion on a perturbed circular orbit in the complex plane in which the point 𝑦(𝑡) slowly
spirals outward such that its distance from the origin at any given time 𝑡 is described by

Φ(𝑡) =
√︁
𝑢2(𝑡) + 𝑣2(𝑡) (4.3)

Using the predictor 𝑦𝑛+2 − 2𝑦𝑛+1 + 𝑦𝑛 = ℎ2 𝑓𝑛+1, we approximate the problem (4.1) in the interval [0, 40]
which corresponds to 20 orbits of the points 𝑦(𝑡) on the uniform step size

ℎ =
𝜋

2𝑘
, 𝑘 = 3(1)10 (4.4)

The problem is well known to have a solution Φ(𝑡) = 1.0019719765345.

Figure 4: Numerical solution comparing with exact solution

Table 1: Numerical results for the hybrid method at 𝑇 = 40𝜋.

𝑘 𝑦exact 𝑦num |Φ𝑒𝑟𝑟𝑜𝑟 | |𝑒𝑟𝑟 (40𝜋) | nfe

3 1.00197 1.01481 1.461e-02 4.735e-02 3535
4 1.00197 1.00365 3.445e-03 5.254e-02 4669
5 1.00197 1.00119 9.940e-04 4.362e-02 6902
6 1.00197 1.00043 2.270e-04 6.030e-03 11396
7 1.00197 1.00026 5.600e-05 6.169e-03 17919
8 1.00197 1.00021 1.400e-05 6.063e-03 26064

http://www.earthlinepublishers.com
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Table 2: Results at 𝑇 = 40𝜋 comparing the proposed method with some existing methods

𝑘 𝑦𝑒𝑥𝑎𝑐𝑡 New Method Method in [4] Method in [8]

3 1.00197 1.01481 0.99486 1.000549
4 1.00197 1.00365 0.99722 1.000502
5 1.00197 1.00119 0.99758 1.000497
6 1.00197 1.00043 0.99769 1.000495
7 1.00197 1.00026 0.99773 1.000494
8 1.00197 1.00021 0.99775 1.000494

Figure (1) demonstrates the variation of the main multistep weights with respect to u. At low
frequencies (𝑢 ≤ 5, shaded green), the coefficients remain nearly constant, indicating a stable and
well-conditioned regime. For higher frequencies (𝑢 > 5, shaded red), the coefficients exhibit increasing
magnitude and divergence among them, suggesting heightened sensitivity to numerical errors. This
behavior informs the practical stepsize selection. Figure (2), which also arises from the trigonometric fitting
and collocation. Their logarithmic behavior reveals that the coefficients remain small and nearly uniform
in the low-frequency region, further indicating minimal phase-lag and amplitude error. Figure (3) shows
the remaining coefficients, similar to the previous sets. The logarithmic scale highlights the boundedness
of coefficients at low frequencies and their rapid growth at higher frequencies, which corresponds to regions
where truncation and rounding errors become more significant. Figure (4) shows the numerical solution
that compares accurately with the theoretical solution. Also, from Tables (1) and (2), we observe that the
new method outperforms methods in [4] and [8].

4.3 Error Behavior

Table 1 and Figure 4 illustrate the error behavior of the proposed method for the test problem at 𝑇 = 40𝜋.
Two error modes are observed: a rapidly diminishing local amplitude error and a global component that
stabilizes after several oscillations due to residual phase drift. The amplitude error |Φerror | decreases almost
geometrically with increasing 𝑘, from 1.46 × 10−2 at 𝑘 = 3 to 1.4 × 10−5 at 𝑘 = 8. This confirms the high
local accuracy, strong phase preservation, and long-term stability. In contrast, the global error |𝑒𝑟𝑟 (40𝜋) |
remains moderate (𝑘 = 3–5) due to accumulated phase effects, but stabilizes around 6 × 10−3 for 𝑘 ≥ 6.

5 Conclusion

In this paper, we propose a new family of frequency-dependent symmetric hybrid linear multistep methods
designed for the efficient numerical integration of periodic initial value problems (IVPs). The methods
attain fourth-order accuracy while exhibiting highly favorable phase properties, a feature that ensures
stability and reliability over long-term integration. Such characteristics make them particularly well-suited
for oscillatory and orbital problems, where conventional schemes often suffer from phase errors and reduced
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efficiency. To illustrate the effectiveness of the proposed approach, we present a numerical experiment on
an orbital oscillatory problem, which highlights both the superior accuracy and computational efficiency
of the method in comparison with existing techniques (see Figure 4 and Tables 1–2).
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