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Abstract

In this paper we combine the notions of multiplicative metric space [6] and cone pentagonal metric
space [5] to form multiplicative cone pentagonal metric space. We prove a variant of the Banach
contraction mapping theorem under two self-maps in this new space. Some corollaries are consequences
of the main result, and some conjectures conclude the paper.

1 Introduction and Preliminaries

Definition 1.1. [1] Let P be a subset of E, where E is a real Banach space. Then P is called a
multiplicative cone if the following conditions are satisfied:

(a) P is closed, nonempty, and P ̸= {1};

(b) a, b ∈ R, a, b ≥ 1, and x, y ∈ P imply that xa · yb ∈ P ;

(c) P ∩ 1
P = {1}.

Definition 1.2. [1] Given a multiplicative cone P ⊂ E, we define a partial ordering ≤ with respect to P

by x ≤ y iff y
x ∈ P .

Notation 1.3. [1] We write x < y to indicate x ≤ y but x ̸= y, while x ≪ y will stand for y
x ∈ int(P ),

where int(P ) denotes the interior of P .

Definition 1.4. [1] We say the multiplicative cone P is multiplicative normal if there exists a constant
K > 0 such that for all x, y ∈ E, 1 ≤ x ≤ y implies

∥x∥ ≤ ∥y∥K .

The least positive number satisfying the above inequality is called the multiplicative constant of P .
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Definition 1.5. [1] Let X be a nonempty set. Suppose that the map m : X2 7→ E satisfies

(a) m(x, y) ≥ 1 for all x, y ∈ X and m(x, y) = 1 if and only if x = y;

(b) m(x, y) = m(y, x);

(c) m(x, y) ≤ m(x, z) ·m(z, y) for all x, y, z ∈ X.

Then m is called a multiplicative cone metric on X and (X,m) is called a multiplicative cone metric space.

Example 1.6. [1] Let E = R2, P = {(x, y) ∈ E : x, y ≥ 1} ⊂ R2, and m : X2 7→ E be defined
as m(x, y) = (a|x−y|, aα|x−y|), where α ≥ 0 is a constant and a > 1 is a constant. Then (X,m) is a
multiplicative cone metric space.

Definition 1.7. [4] Let X be a nonempty set and the mapping m : X2 7→ E satisfies

(a) m(x, y) ≥ 1 for all x, y ∈ X and m(x, y) = 1 if and only if x = y;

(b) m(x, y) = m(y, x) for all x, y ∈ X;

(c) m(x, y) ≤ m(x, z) · m(z, w) · m(w, y) for all x, y ∈ X and all distinct points z, w ∈ X − {x, y}
(multiplicative rectangular inequality).

Then m is called a multiplicative cone rectangular metric and (X,m) is called a multiplicative cone
rectangular metric space.

Example 1.8. [4] Let E = R2, P = {(x, y) ∈ E : x, y ≥ 1}, X = R, and m : X2 7→ E be defined as

m(x, y) =


(1, 1) if x = y

(a3α, a3) if x and y are in {1, 2}, x ̸= y

(aα, a) if x and y cannot both at a time in {1, 2}, x ̸= y

where α > 0 is a constant and a > 1 is a constant. Then (X,m) is a multiplicative cone rectangular metric
space, but it is not a multiplicative cone metric space since we have m(1, 2) = (a3α, a3) > m(1, 3)·m(3, 2) =

(a2α, a2).

Now we introduce the definition of multiplicative cone pentagonal metric space as follows

Definition 1.9. Let X be a nonempty set. Suppose the mapping m : X2 7→ E satisfies

(a) 1 < m(x, y) for all x, y ∈ X and m(x, y) = 1 if and only if x = y;

(b) m(x, y) = m(y, x) for x, y ∈ X;
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(c) m(x, y) ≤ m(x, z) · m(z, w) · m(w, u) · m(u, y) for all x, y, z, w, u ∈ X and for all distinct points
z, w, u ∈ X − {x, y} (multiplicative pentagonal property).

Then m is called a multiplicative cone pentagonal metric on X, and (X,m) is called a multiplicative cone
pentagonal metric space.

Definition 1.10. Let (X,m) be a multiplicative cone pentagonal metric space and {xn} be a sequence in
(X,m). Then

(a) {xn} multiplicative converges to x ∈ X whenever for every c ∈ E with 1 ≪ c, there is a natural
number n0 such that m(xn, x) ≪ c for all n ≥ n0, we denote this by limn→∞ xn = x or xn → x.

(b) {xn} is a multiplicative Cauchy sequence whenever for every c ∈ E with 1 ≪ c there is a natural
number n0 such that m(xn, xn+r) ≪ c for all n ≥ n0.

(c) (X,m) is called mutliplicative complete cone pentagonal metric space if every multiplicative Cauchy
sequence in (X,m) is multiplicative convergent in (X,m).

Definition 1.11. [4] Let P be a multiplicative cone defined as above and let Φ be the set of all
non-decreasing continuous functions φ : P 7→ P satisfying

(a) 1 < φ(t) < t for all t ∈ P − {1};

(b) the series
∏

n≥0 φ
n(t) converges for all t ∈ P − {1}.

From (a) we have φ(1) = 1 and from (b) we have limφn(t) = 1 for all t ∈ P − {1}.

Definition 1.12. [2] Let T and S be self maps of a nonempty set X. If w = Tx = Sx for some x ∈ X,
then x is called a coincidence point of T and S, and w is called a point of coincidence of T and S.

Definition 1.13. [2] Let T and S be self maps of a nonempty set X. T and S are said to be weakly
compatible if they commute at their coincidence point, that is, Tx = Sx implies that TSx = STx.

Lemma 1.14. [3] Let T and S be weakly compatible self mappings of a nonempty set X. If T and S have
a unique point of coincidence w = Tx = Sx, then w is the unique common fixed point of T and S.

Lemma 1.15. Let (X,m) be a complete multiplicative cone pentagonal metric space. Let {xn} be a
multiplicative Cauchy sequence in X, and suppose there is a natural number N such that

(a) xn ̸= xm for all n,m > N ;

(b) xn, x are distinct points in X for all n > N ;

(c) xn, y are distinct points in X for all n > N ;

(d) xn → x and xn → y as n → ∞.

Then x = y.
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2 Main Result

Our main result is as follows

Theorem 2.1. Let (X,m) be a multiplicative cone pentagonal metric space. Suppose the mappings S, f :

X 7→ X satisfy the contractive condition

m(Sx, Sy) ≤ φ(m(fx, fy))

for all x, y ∈ X, where φ ∈ Φ. Suppose that S(X) ⊆ f(X), and f(X) or S(X) is a complete subspace of
X, then the mappings S and f have a unique point of coincidence in X. Moreover, if S and f are weakly
compatible, then S and f have a unique common fixed point in X.

Proof. Let x0 be an arbitrary point in X. Since S(X) ⊆ f(X), we can choose x1 ∈ X such that Sx0 =

fx1. Continuing this process, having chosen xn in X, we obtain xn+1 such that Sxn = fxn+1 for all
n = 0, 1, 2, · · · . We assume that Sxn ̸= Sxn−1 for all n ∈ N. Then from the contractive definition of the
theorem, we have

m(Sxn, Sxn+1) ≤ φ(m(fxn, fxn+1))

= φ(m(Sxn−1, Sxn))

≤ φ2(m(fxn−1, fxn))

...

≤ φn(m(Sx0, Sx1)).

In a similar way it follows that

m(Sxn, Sxn+2) ≤ φn(m(Sx0, Sx2))

m(Sxn, Sxn+3) ≤ φn(m(Sx0, Sx3)).

Similarly for k = 1, 2, 3, · · · , it further follows that

m(Sxn, Sxn+3k+1) ≤ φn(m(Sx0, Sx3k+1))

m(Sxn, Sxn+3k+2) ≤ φn(m(Sx0, Sx3k+2))

m(Sxn, Sxn+3k+3) ≤ φn(m(Sx0, Sx3k+3)).

Since m(Sxn, Sxn+1) ≤ φn(m(Sx0, Sx1)), by multiplicative pentagonal property, we have

m(Sx0, Sx4) ≤ m(Sx0, Sx1) ·m(Sx1, Sx2) ·m(Sx2, Sx3) ·m(Sx3, Sx4)

≤ m(Sx0, Sx1) · φ(m(Sx0, Sx1)) · φ2(m(Sx0, Sx1)) · φ3(m(Sx0, Sx1))

≤
3∏

i=0

φi(m(Sx0, Sx1))
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and

m(Sx0, Sx7) ≤ m(Sx0, Sx1) ·m(Sx1, Sx2) ·m(Sx2, Sx3) ·m(Sx3, Sx4) ·m(Sx4, Sx5) ·m(Sx5, Sx6)

·m(Sx6, Sx7)

≤
6∏

i=0

φi(m(Sx0, Sx1)).

By induction, we have for each k = 1, 2, 3, · · ·

m(Sx0, Sx3k+1) ≤
3k∏
i=0

φi(m(Sx0, Sx1)).

Also using m(Sxn, Sxn+1) ≤ φn(m(Sx0, Sx1)), m(Sxn, Sxn+2) ≤ φn(m(Sx0, Sx2)), and multiplicative
pentagonal property, we have that

m(Sx0, Sx5) ≤
2∏

i=0

φi(m(Sx0, Sx1)) · φ3(m(Sx0, Sx2))

and

m(Sx0, Sx8) ≤
5∏

i=0

φi(m(Sx0, Sx1)) · φ6(m(Sx0, Sx2)).

By induction, we have for each k = 1, 2, 3, · · ·

m(Sx0, Sx3k+2) ≤
3k−1∏
i=0

φi(m(Sx0, Sx1)) · φ3k(m(Sx0, Sx2)).

Again using m(Sxn, Sxn+1) ≤ φn(m(Sx0, Sx1)), m(Sxn, Sxn+3) ≤ φn(m(Sx0, Sx3)), and multiplicative
pentagonal property, we have that

m(Sx0, Sx6) ≤
2∏

i=0

φi(m(Sx0, Sx1)) · φ3(m(Sx0, Sx3))

and

m(Sx0, Sx9) ≤
5∏

i=0

φi(m(Sx0, Sx1)) · φ6(m(Sx0, Sx3)).

By induction, we have for each k = 1, 2, 3, · · ·

m(Sx0, Sx3k+3) ≤
3k−1∏
i=0

φi(m(Sx0, Sx1)) · φ3k(m(Sx0, Sx3)).

Now using m(Sxn, Sxn+3k+1) ≤ φn(m(Sx0, Sx3k+1)), and m(Sx0, Sx3k+1) ≤
∏3k

i=0 φ
i(m(Sx0, Sx1)), for
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each k = 1, 2, 3, · · · , we have that

m(Sxn, Sxn+3k+1) ≤ φn(

3k∏
i=0

φi(m(Sx0, Sx1)))

≤ φn(
3k∏
i=0

φi(m(Sx0, Sx1) ·m(Sx0, Sx2) ·m(Sx0, Sx3)))

≤ φn(
∞∏
i=0

φi(m(Sx0, Sx1) ·m(Sx0, Sx2) ·m(Sx0, Sx3))).

Now using m(Sxn, Sxn+3k+2) ≤ φn(m(Sx0, Sx3k+2)), and m(Sx0, Sx3k+2) ≤
∏3k−1

i=0 φi(m(Sx0, Sx1)) ·
φ3k(m(Sx0, Sx2)), for each k = 1, 2, 3, · · · , we have that

m(Sxn, Sxn+3k+2) ≤ φn(
3k−1∏
i=0

φi(m(Sx0, Sx1)) · φ3k(m(Sx0, Sx2)))

≤ φn(

∞∏
i=0

φi(m(Sx0, Sx1) ·m(Sx0, Sx2) ·m(Sx0, Sx3))).

Now using m(Sxn, Sxn+3k+3) ≤ φn(m(Sx0, Sx3k+3)), and m(Sx0, Sx3k+3) ≤
∏3k−1

i=0 φi(m(Sx0, Sx1)) ·
φ3k(m(Sx0, Sx3)), for each k = 1, 2, 3, · · · , we have that

m(Sxn, Sxn+3k+3) ≤ φn(
∞∏
i=0

φi(m(Sx0, Sx1) ·m(Sx0, Sx2) ·m(Sx0, Sx3))).

Thus, for each m we have

m(Sxn, Sxn+m) ≤ φn(

∞∏
i=0

φi(m(Sx0, Sx1) ·m(Sx0, Sx2) ·m(Sx0, Sx3))).

Since
∏∞

i=0 φ
i(m(Sx0, Sx1)·m(Sx0, Sx2)·m(Sx0, Sx3)) converges (by Definition 1.11), where m(Sx0, Sx1)·

m(Sx0, Sx2) ·m(Sx0, Sx3) ∈ P−{1}, and P is closed,
∏∞

i=0 φ
i(m(Sx0, Sx1) ·m(Sx0, Sx2) ·m(Sx0, Sx3)) ∈

P − {1}. Hence

lim
n→∞

φn(

∞∏
i=0

φi(m(Sx0, Sx1) ·m(Sx0, Sx2) ·m(Sx0, Sx3))) = 1.

Then for given c ≫ 1, there is a natural number N1 such that

φn(
∞∏
i=0

φi(m(Sx0, Sx1) ·m(Sx0, Sx2) ·m(Sx0, Sx3))) ≪ c

for all n ≥ N1. It follows that m(Sxn, Sxn+m) ≪ c, for all n ≥ N1. Therefore {Sxn} is a multiplicative
Cauchy sequence in X. Suppose S(X) is a complete subspace of X, then there exists a point z ∈ S(X)

such that limn→∞ Sxn = limn→∞ fxn+1 = z. Also we can find a point y ∈ X such that fy = z. Now
we show that Sy = z. Given c ≫ 1, we choose natural numbers N2, N3 such that m(z, fxn) ≪ c

1
4 for all
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n ≥ N2, and m(Sxn, Sxn−1) ≪ c
1
4 for all n ≥ N3. Since xn ̸= xm for n ̸= m, by multiplicative pentagonal

property we have that

m(Sy, z) ≤ m(Sy, Sxn) ·m(Sxn, fxn) ·m(fxn, fxn−1) ·m(fxn−1, z)

≤ φ(m(fy, fxn)) ·m(Sxn, Sxn−1) ·m(Sxn−1, Sxn−2) ·m(fxn−1, z)

< m(fy, fxn) ·m(Sxn, Sxn−1) ·m(Sxn−1, Sxn−2) ·m(fxn−1, z)

≪ c
1
4 · c

1
4 · c

1
4 · c

1
4

= c

for all n > N , where N = max{N2, N3}. Since c is arbitrary, we have m(Sy, z) ≪ c
1
m for all m ∈ N.

Since c
1
m → 1 as m → ∞, we conclude that c

1
m · 1

m(Sy,z) → 1
m(Sy,z) as m → ∞. Since P is closed,

1
m(Sy,z) ∈ P . Hence m(Sy, z) ∈ P ∩ 1

P . By definition of multiplicative cone, we get that m(Sy, z) = 1, and
so Sy = fy = z. Hence z is a point of coincidence of S and f .

Next, we show that z is unique. Suppose z′ is another point of coincidence of S and f , that is,
Sx = fx = z′, for some x ∈ X. Then

m(z, z′) = m(Sy, Sx) ≤ φ(m(fy, fx)) = φ(m(z, z′)) < m(z, z′).

Hence z = z′. Since S and f are weakly compatible, by Lemma 1.14, z is the unique common fixed point
of S and f , and the proof is finished.

Corollary 2.2. Let (X,m) be a multiplicative cone pentagonal metric space and P be a multiplicative
normal cone with multiplicative normal constant k. Suppose the mappings S, f : X 7→ X satisfy the
contractive condition

m(Sx, Sy) ≤ m(fx, fy)λ

for all x, y ∈ X, where λ ∈ [0, 1). Suppose that S(X) ⊆ f(X) and f(X) or S(X) is a complete subspace of
X, then the mappings S and f have a unique point of coincidence in X. Moreover, if S and f are weakly
compatible, then S and f have a unique common fixed point in X.

Proof. Define φ : P 7→ P by φ(t) = tλ. Then it is clear that φ satisfies the conditions in Definition 1.11.
Hence the result follows from the above theorem.

Corollary 2.3. Let (X,m) be a multiplicative cone pentagonal metric space. Suppose the mapping S :

X 7→ X satisfy the following

m(Sx, Sy) ≤ φ(m(x, y))

for all x, y ∈ X, where φ ∈ Φ. Then S has a unique fixed point in X.

Proof. Put f = I in the above theorem, where I is the identity mapping. This completes the proof.
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Corollary 2.4. Let (X,m) be a multiplicative cone pentagonal metric space and P be a multiplicative
normal cone with multiplicative normal constant k. Suppose the mapping S : X 7→ X satisfies the
contractive condition

m(Sx, Sy) ≤ m(x, y)λ

for all x, y ∈ X, where λ ∈ [0, 1). Then S has a unique fixed point in X.

Proof. Put f = I in Corollary 2.2, where I is the identity mapping. This completes the proof.

Example 2.5. Let X = {r, s, t, u, v}, E = R2, P = {(x, y) ∈ E : x, y ≥ 1} be a multiplicative cone in E,
and a > 1 be a constant. Define m : X2 7→ E by

m(x, x) = 1,

m(r, s) = m(s, r) = (a4, a8),

m(r, t) = m(t, r) = m(t, u) = m(u, t) = m(s, t) = m(t, s) = m(s, u) = m(u, s) = m(r, u) = m(u, r) = (a, a2),

m(r, v) = m(v, r) = m(s, v) = m(v, s) = m(t, v) = m(v, t) = m(u, v) = m(v, u) = (a3, a6).

Then (X,m) is a complete multiplicative cone pentagonal metric space, but (X,m) is not a complete cone
multiplicative rectangular metric space because it lacks the multiplicative rectangular property:

(a4, a8) = m(r, s) > m(r, t) ·m(t, u) ·m(u, s) = (a3, a6).

Now we define mappings S, f : X 7→ X as follows:

S(x) =

u if x ̸= v

s if x = v

f(x) =



t if x = r

r if x = s

s if x = t

u if x = u

v if x = v

Clearly S(X) ⊆ f(X), f(X) is a complete subspace of X and the pair (S, f) is weakly compatible. The
inequality m(Sx, Sy) ≤ φ(m(fx, fy)) holds for all x, y ∈ X, where φ(t) = t

1
3 and u ∈ X is the unique

common fixed point of the mappings S and f .
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3 Open Problems

The open problem is to prove or disprove the following

Conjecture 3.1. Let (X,m) be a multiplicative cone pentagonal metric space. Suppose the mappings
S, f : X 7→ X satisfy the contractive condition

m(Sfx, Sfy) ≤ φ(m(Sx, Sy))

for all x, y ∈ X, where φ ∈ Φ. Suppose that S is one-to-one, S(X) is a complete subspace of X, then the
mapping f have a unique fixed point in X. Moreover, if S and f are commuting at the fixed point of f,
then S and f have a unique common fixed point in X.

Conjecture 3.2. Conjecture 3.1 holds in multiplicative cone rectangular metric space [4].

References

[1] Ampadu, C. B. (2019). A fixed point theorem of the Hardy and Rogers kind endowed with multiplicative
cone-C class functions. Earthline Journal of Mathematical Sciences, 2 (1), 169–179. https://doi.org/10.
34198/ejms.2119.169179

[2] Auwalu, A., & Hınçal, E. (2016). Common fixed points of two maps in cone pentagonal metric spaces. Global
Journal of Pure and Applied Mathematics, 12 (3), 2423–2435.

[3] Abbas, M., & Jungck, G. (2008). Common fixed point results for non-commuting mappings without continuity
in cone metric spaces. Journal of Mathematical Analysis and Applications, 341, 416–420. https://doi.org/
10.1016/j.jmaa.2007.09.070

[4] Ampadu, C. B. (2024). On a variant of the Banach contraction mapping theorem in multiplicative cone
rectangular metric space. JP Journal of Fixed Point Theory and Applications, 20, 25–34. https://doi.org/
10.17654/0973422824002

[5] Garg, M., & Agarwal, S. (2012). Banach contraction principle on cone pentagonal metric space. Journal of
Advanced Studies in Topology, 3 (1), 12–18. https://doi.org/10.20454/jast.2012.230

[6] Bashirov, A., Kurpınar, E., & Ozyapici, A. (2008). Multiplicative calculus and its applications. Journal of
Mathematical Analysis and Applications, 337 (1), 36–48. https://doi.org/10.1016/j.jmaa.2007.03.081

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted, use, distribution and reproduction in any medium,
or format for any purpose, even commercially provided the work is properly cited.

Earthline J. Math. Sci. Vol. 16 No. 1 (2026), 45-53

https://doi.org/10.34198/ejms.2119.169179
https://doi.org/10.34198/ejms.2119.169179
https://doi.org/10.1016/j.jmaa.2007.09.070
https://doi.org/10.1016/j.jmaa.2007.09.070
https://doi.org/10.17654/0973422824002
https://doi.org/10.17654/0973422824002
https://doi.org/10.20454/jast.2012.230
https://doi.org/10.1016/j.jmaa.2007.03.081
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Introduction and Preliminaries
	Main Result
	Open Problems

