

Extension of Banach Contraction Mapping Principle in Multiplicative Cone Pentagonal Metric Space to a Pair of Two Self Mappings

Clement Boateng Ampadu

31 Carrollton Road, Boston, MA 02132-6303, USA

e-mail: profampadu@gmail.com

Abstract

In this paper we combine the notions of multiplicative metric space [6] and cone pentagonal metric space [5] to form multiplicative cone pentagonal metric space. We prove a variant of the Banach contraction mapping theorem under two self-maps in this new space. Some corollaries are consequences of the main result, and some conjectures conclude the paper.

1 Introduction and Preliminaries

Definition 1.1. [1] Let P be a subset of E , where E is a real Banach space. Then P is called a multiplicative cone if the following conditions are satisfied:

- (a) P is closed, nonempty, and $P \neq \{1\}$;
- (b) $a, b \in \mathbb{R}$, $a, b \geq 1$, and $x, y \in P$ imply that $x^a \cdot y^b \in P$;
- (c) $P \cap \frac{1}{P} = \{1\}$.

Definition 1.2. [1] Given a multiplicative cone $P \subset E$, we define a partial ordering \leq with respect to P by $x \leq y$ iff $\frac{y}{x} \in P$.

Notation 1.3. [1] We write $x < y$ to indicate $x \leq y$ but $x \neq y$, while $x \ll y$ will stand for $\frac{y}{x} \in \text{int}(P)$, where $\text{int}(P)$ denotes the interior of P .

Definition 1.4. [1] We say the multiplicative cone P is multiplicative normal if there exists a constant $K > 0$ such that for all $x, y \in E$, $1 \leq x \leq y$ implies

$$\|x\| \leq \|y\|^K.$$

The least positive number satisfying the above inequality is called the multiplicative constant of P .

Received: September 17, 2025; Accepted: November 11, 2025; Published: November 20, 2025

2020 Mathematics Subject Classification: 54H25, 47H10.

Keywords and phrases: multiplicative metric space, cone pentagonal metric space, Banach contraction principle.

Copyright 2026 the Author

Definition 1.5. [1] Let X be a nonempty set. Suppose that the map $m : X^2 \mapsto E$ satisfies

- (a) $m(x, y) \geq 1$ for all $x, y \in X$ and $m(x, y) = 1$ if and only if $x = y$;
- (b) $m(x, y) = m(y, x)$;
- (c) $m(x, y) \leq m(x, z) \cdot m(z, y)$ for all $x, y, z \in X$.

Then m is called a multiplicative cone metric on X and (X, m) is called a multiplicative cone metric space.

Example 1.6. [1] Let $E = \mathbb{R}^2$, $P = \{(x, y) \in E : x, y \geq 1\} \subset \mathbb{R}^2$, and $m : X^2 \mapsto E$ be defined as $m(x, y) = (a^{|x-y|}, a^{\alpha|x-y|})$, where $\alpha \geq 0$ is a constant and $a > 1$ is a constant. Then (X, m) is a multiplicative cone metric space.

Definition 1.7. [4] Let X be a nonempty set and the mapping $m : X^2 \mapsto E$ satisfies

- (a) $m(x, y) \geq 1$ for all $x, y \in X$ and $m(x, y) = 1$ if and only if $x = y$;
- (b) $m(x, y) = m(y, x)$ for all $x, y \in X$;
- (c) $m(x, y) \leq m(x, z) \cdot m(z, w) \cdot m(w, y)$ for all $x, y \in X$ and all distinct points $z, w \in X - \{x, y\}$ (multiplicative rectangular inequality).

Then m is called a multiplicative cone rectangular metric and (X, m) is called a multiplicative cone rectangular metric space.

Example 1.8. [4] Let $E = \mathbb{R}^2$, $P = \{(x, y) \in E : x, y \geq 1\}$, $X = \mathbb{R}$, and $m : X^2 \mapsto E$ be defined as

$$m(x, y) = \begin{cases} (1, 1) & \text{if } x = y \\ (a^{3\alpha}, a^3) & \text{if } x \text{ and } y \text{ are in } \{1, 2\}, x \neq y \\ (a^\alpha, a) & \text{if } x \text{ and } y \text{ cannot both at a time in } \{1, 2\}, x \neq y \end{cases}$$

where $\alpha > 0$ is a constant and $a > 1$ is a constant. Then (X, m) is a multiplicative cone rectangular metric space, but it is not a multiplicative cone metric space since we have $m(1, 2) = (a^{3\alpha}, a^3) > m(1, 3) \cdot m(3, 2) = (a^{2\alpha}, a^2)$.

Now we introduce the definition of multiplicative cone pentagonal metric space as follows

Definition 1.9. Let X be a nonempty set. Suppose the mapping $m : X^2 \mapsto E$ satisfies

- (a) $1 < m(x, y)$ for all $x, y \in X$ and $m(x, y) = 1$ if and only if $x = y$;
- (b) $m(x, y) = m(y, x)$ for $x, y \in X$;

(c) $m(x, y) \leq m(x, z) \cdot m(z, w) \cdot m(w, u) \cdot m(u, y)$ for all $x, y, z, w, u \in X$ and for all distinct points $z, w, u \in X - \{x, y\}$ (multiplicative pentagonal property).

Then m is called a multiplicative cone pentagonal metric on X , and (X, m) is called a multiplicative cone pentagonal metric space.

Definition 1.10. Let (X, m) be a multiplicative cone pentagonal metric space and $\{x_n\}$ be a sequence in (X, m) . Then

- (a) $\{x_n\}$ multiplicative converges to $x \in X$ whenever for every $c \in E$ with $1 \ll c$, there is a natural number n_0 such that $m(x_n, x) \ll c$ for all $n \geq n_0$, we denote this by $\lim_{n \rightarrow \infty} x_n = x$ or $x_n \rightarrow x$.
- (b) $\{x_n\}$ is a multiplicative Cauchy sequence whenever for every $c \in E$ with $1 \ll c$ there is a natural number n_0 such that $m(x_n, x_{n+r}) \ll c$ for all $n \geq n_0$.
- (c) (X, m) is called mutliplicative complete cone pentagonal metric space if every multiplicative Cauchy sequence in (X, m) is multiplicative convergent in (X, m) .

Definition 1.11. [4] Let P be a multiplicative cone defined as above and let Φ be the set of all non-decreasing continuous functions $\varphi : P \mapsto P$ satisfying

- (a) $1 < \varphi(t) < t$ for all $t \in P - \{1\}$;
- (b) the series $\prod_{n \geq 0} \varphi^n(t)$ converges for all $t \in P - \{1\}$.

From (a) we have $\varphi(1) = 1$ and from (b) we have $\lim \varphi^n(t) = 1$ for all $t \in P - \{1\}$.

Definition 1.12. [2] Let T and S be self maps of a nonempty set X . If $w = Tx = Sx$ for some $x \in X$, then x is called a coincidence point of T and S , and w is called a point of coincidence of T and S .

Definition 1.13. [2] Let T and S be self maps of a nonempty set X . T and S are said to be weakly compatible if they commute at their coincidence point, that is, $Tx = Sx$ implies that $TSx = STx$.

Lemma 1.14. [3] Let T and S be weakly compatible self mappings of a nonempty set X . If T and S have a unique point of coincidence $w = Tx = Sx$, then w is the unique common fixed point of T and S .

Lemma 1.15. Let (X, m) be a complete multiplicative cone pentagonal metric space. Let $\{x_n\}$ be a multiplicative Cauchy sequence in X , and suppose there is a natural number N such that

- (a) $x_n \neq x_m$ for all $n, m > N$;
- (b) x_n, x are distinct points in X for all $n > N$;
- (c) x_n, y are distinct points in X for all $n > N$;
- (d) $x_n \rightarrow x$ and $x_n \rightarrow y$ as $n \rightarrow \infty$.

Then $x = y$.

2 Main Result

Our main result is as follows

Theorem 2.1. *Let (X, m) be a multiplicative cone pentagonal metric space. Suppose the mappings $S, f : X \mapsto X$ satisfy the contractive condition*

$$m(Sx, Sy) \leq \varphi(m(fx, fy))$$

for all $x, y \in X$, where $\varphi \in \Phi$. Suppose that $S(X) \subseteq f(X)$, and $f(X)$ or $S(X)$ is a complete subspace of X , then the mappings S and f have a unique point of coincidence in X . Moreover, if S and f are weakly compatible, then S and f have a unique common fixed point in X .

Proof. Let x_0 be an arbitrary point in X . Since $S(X) \subseteq f(X)$, we can choose $x_1 \in X$ such that $Sx_0 = fx_1$. Continuing this process, having chosen x_n in X , we obtain x_{n+1} such that $Sx_n = fx_{n+1}$ for all $n = 0, 1, 2, \dots$. We assume that $Sx_n \neq Sx_{n-1}$ for all $n \in \mathbb{N}$. Then from the contractive definition of the theorem, we have

$$\begin{aligned} m(Sx_n, Sx_{n+1}) &\leq \varphi(m(fx_n, fx_{n+1})) \\ &= \varphi(m(Sx_{n-1}, Sx_n)) \\ &\leq \varphi^2(m(fx_{n-1}, fx_n)) \\ &\vdots \\ &\leq \varphi^n(m(Sx_0, Sx_1)). \end{aligned}$$

In a similar way it follows that

$$\begin{aligned} m(Sx_n, Sx_{n+2}) &\leq \varphi^n(m(Sx_0, Sx_2)) \\ m(Sx_n, Sx_{n+3}) &\leq \varphi^n(m(Sx_0, Sx_3)). \end{aligned}$$

Similarly for $k = 1, 2, 3, \dots$, it further follows that

$$\begin{aligned} m(Sx_n, Sx_{n+3k+1}) &\leq \varphi^n(m(Sx_0, Sx_{3k+1})) \\ m(Sx_n, Sx_{n+3k+2}) &\leq \varphi^n(m(Sx_0, Sx_{3k+2})) \\ m(Sx_n, Sx_{n+3k+3}) &\leq \varphi^n(m(Sx_0, Sx_{3k+3})). \end{aligned}$$

Since $m(Sx_n, Sx_{n+1}) \leq \varphi^n(m(Sx_0, Sx_1))$, by multiplicative pentagonal property, we have

$$\begin{aligned} m(Sx_0, Sx_4) &\leq m(Sx_0, Sx_1) \cdot m(Sx_1, Sx_2) \cdot m(Sx_2, Sx_3) \cdot m(Sx_3, Sx_4) \\ &\leq m(Sx_0, Sx_1) \cdot \varphi(m(Sx_0, Sx_1)) \cdot \varphi^2(m(Sx_0, Sx_1)) \cdot \varphi^3(m(Sx_0, Sx_1)) \\ &\leq \prod_{i=0}^3 \varphi^i(m(Sx_0, Sx_1)) \end{aligned}$$

and

$$\begin{aligned}
 m(Sx_0, Sx_7) &\leq m(Sx_0, Sx_1) \cdot m(Sx_1, Sx_2) \cdot m(Sx_2, Sx_3) \cdot m(Sx_3, Sx_4) \cdot m(Sx_4, Sx_5) \cdot m(Sx_5, Sx_6) \\
 &\quad \cdot m(Sx_6, Sx_7) \\
 &\leq \prod_{i=0}^6 \varphi^i(m(Sx_0, Sx_1)).
 \end{aligned}$$

By induction, we have for each $k = 1, 2, 3, \dots$

$$m(Sx_0, Sx_{3k+1}) \leq \prod_{i=0}^{3k} \varphi^i(m(Sx_0, Sx_1)).$$

Also using $m(Sx_n, Sx_{n+1}) \leq \varphi^n(m(Sx_0, Sx_1))$, $m(Sx_n, Sx_{n+2}) \leq \varphi^n(m(Sx_0, Sx_2))$, and multiplicative pentagonal property, we have that

$$m(Sx_0, Sx_5) \leq \prod_{i=0}^2 \varphi^i(m(Sx_0, Sx_1)) \cdot \varphi^3(m(Sx_0, Sx_2))$$

and

$$m(Sx_0, Sx_8) \leq \prod_{i=0}^5 \varphi^i(m(Sx_0, Sx_1)) \cdot \varphi^6(m(Sx_0, Sx_2)).$$

By induction, we have for each $k = 1, 2, 3, \dots$

$$m(Sx_0, Sx_{3k+2}) \leq \prod_{i=0}^{3k-1} \varphi^i(m(Sx_0, Sx_1)) \cdot \varphi^{3k}(m(Sx_0, Sx_2)).$$

Again using $m(Sx_n, Sx_{n+1}) \leq \varphi^n(m(Sx_0, Sx_1))$, $m(Sx_n, Sx_{n+3}) \leq \varphi^n(m(Sx_0, Sx_3))$, and multiplicative pentagonal property, we have that

$$m(Sx_0, Sx_6) \leq \prod_{i=0}^2 \varphi^i(m(Sx_0, Sx_1)) \cdot \varphi^3(m(Sx_0, Sx_3))$$

and

$$m(Sx_0, Sx_9) \leq \prod_{i=0}^5 \varphi^i(m(Sx_0, Sx_1)) \cdot \varphi^6(m(Sx_0, Sx_3)).$$

By induction, we have for each $k = 1, 2, 3, \dots$

$$m(Sx_0, Sx_{3k+3}) \leq \prod_{i=0}^{3k-1} \varphi^i(m(Sx_0, Sx_1)) \cdot \varphi^{3k}(m(Sx_0, Sx_3)).$$

Now using $m(Sx_n, Sx_{n+3k+1}) \leq \varphi^n(m(Sx_0, Sx_{3k+1}))$, and $m(Sx_0, Sx_{3k+1}) \leq \prod_{i=0}^{3k} \varphi^i(m(Sx_0, Sx_1))$, for

each $k = 1, 2, 3, \dots$, we have that

$$\begin{aligned} m(Sx_n, Sx_{n+3k+1}) &\leq \varphi^n \left(\prod_{i=0}^{3k} \varphi^i(m(Sx_0, Sx_1)) \right) \\ &\leq \varphi^n \left(\prod_{i=0}^{3k} \varphi^i(m(Sx_0, Sx_1) \cdot m(Sx_0, Sx_2) \cdot m(Sx_0, Sx_3)) \right) \\ &\leq \varphi^n \left(\prod_{i=0}^{\infty} \varphi^i(m(Sx_0, Sx_1) \cdot m(Sx_0, Sx_2) \cdot m(Sx_0, Sx_3)) \right). \end{aligned}$$

Now using $m(Sx_n, Sx_{n+3k+2}) \leq \varphi^n(m(Sx_0, Sx_{3k+2}))$, and $m(Sx_0, Sx_{3k+2}) \leq \prod_{i=0}^{3k-1} \varphi^i(m(Sx_0, Sx_1)) \cdot \varphi^{3k}(m(Sx_0, Sx_2))$, for each $k = 1, 2, 3, \dots$, we have that

$$\begin{aligned} m(Sx_n, Sx_{n+3k+2}) &\leq \varphi^n \left(\prod_{i=0}^{3k-1} \varphi^i(m(Sx_0, Sx_1)) \cdot \varphi^{3k}(m(Sx_0, Sx_2)) \right) \\ &\leq \varphi^n \left(\prod_{i=0}^{\infty} \varphi^i(m(Sx_0, Sx_1) \cdot m(Sx_0, Sx_2) \cdot m(Sx_0, Sx_3)) \right). \end{aligned}$$

Now using $m(Sx_n, Sx_{n+3k+3}) \leq \varphi^n(m(Sx_0, Sx_{3k+3}))$, and $m(Sx_0, Sx_{3k+3}) \leq \prod_{i=0}^{3k-1} \varphi^i(m(Sx_0, Sx_1)) \cdot \varphi^{3k}(m(Sx_0, Sx_3))$, for each $k = 1, 2, 3, \dots$, we have that

$$m(Sx_n, Sx_{n+3k+3}) \leq \varphi^n \left(\prod_{i=0}^{\infty} \varphi^i(m(Sx_0, Sx_1) \cdot m(Sx_0, Sx_2) \cdot m(Sx_0, Sx_3)) \right).$$

Thus, for each m we have

$$m(Sx_n, Sx_{n+m}) \leq \varphi^n \left(\prod_{i=0}^{\infty} \varphi^i(m(Sx_0, Sx_1) \cdot m(Sx_0, Sx_2) \cdot m(Sx_0, Sx_3)) \right).$$

Since $\prod_{i=0}^{\infty} \varphi^i(m(Sx_0, Sx_1) \cdot m(Sx_0, Sx_2) \cdot m(Sx_0, Sx_3))$ converges (by Definition 1.11), where $m(Sx_0, Sx_1) \cdot m(Sx_0, Sx_2) \cdot m(Sx_0, Sx_3) \in P - \{1\}$, and P is closed, $\prod_{i=0}^{\infty} \varphi^i(m(Sx_0, Sx_1) \cdot m(Sx_0, Sx_2) \cdot m(Sx_0, Sx_3)) \in P - \{1\}$. Hence

$$\lim_{n \rightarrow \infty} \varphi^n \left(\prod_{i=0}^{\infty} \varphi^i(m(Sx_0, Sx_1) \cdot m(Sx_0, Sx_2) \cdot m(Sx_0, Sx_3)) \right) = 1.$$

Then for given $c \gg 1$, there is a natural number N_1 such that

$$\varphi^n \left(\prod_{i=0}^{\infty} \varphi^i(m(Sx_0, Sx_1) \cdot m(Sx_0, Sx_2) \cdot m(Sx_0, Sx_3)) \right) \ll c$$

for all $n \geq N_1$. It follows that $m(Sx_n, Sx_{n+m}) \ll c$, for all $n \geq N_1$. Therefore $\{Sx_n\}$ is a multiplicative Cauchy sequence in X . Suppose $S(X)$ is a complete subspace of X , then there exists a point $z \in S(X)$ such that $\lim_{n \rightarrow \infty} Sx_n = \lim_{n \rightarrow \infty} fx_{n+1} = z$. Also we can find a point $y \in X$ such that $fy = z$. Now we show that $Sy = z$. Given $c \gg 1$, we choose natural numbers N_2, N_3 such that $m(z, fx_n) \ll c^{\frac{1}{4}}$ for all

$n \geq N_2$, and $m(Sx_n, Sx_{n-1}) \ll c^{\frac{1}{4}}$ for all $n \geq N_3$. Since $x_n \neq x_m$ for $n \neq m$, by multiplicative pentagonal property we have that

$$\begin{aligned} m(Sy, z) &\leq m(Sy, Sx_n) \cdot m(Sx_n, fx_n) \cdot m(fx_n, fx_{n-1}) \cdot m(fx_{n-1}, z) \\ &\leq \varphi(m(fy, fx_n)) \cdot m(Sx_n, Sx_{n-1}) \cdot m(Sx_{n-1}, Sx_{n-2}) \cdot m(fx_{n-1}, z) \\ &< m(fy, fx_n) \cdot m(Sx_n, Sx_{n-1}) \cdot m(Sx_{n-1}, Sx_{n-2}) \cdot m(fx_{n-1}, z) \\ &\ll c^{\frac{1}{4}} \cdot c^{\frac{1}{4}} \cdot c^{\frac{1}{4}} \cdot c^{\frac{1}{4}} \\ &= c \end{aligned}$$

for all $n > N$, where $N = \max\{N_2, N_3\}$. Since c is arbitrary, we have $m(Sy, z) \ll c^{\frac{1}{m}}$ for all $m \in \mathbb{N}$. Since $c^{\frac{1}{m}} \rightarrow 1$ as $m \rightarrow \infty$, we conclude that $c^{\frac{1}{m}} \cdot \frac{1}{m(Sy, z)} \rightarrow \frac{1}{m(Sy, z)}$ as $m \rightarrow \infty$. Since P is closed, $\frac{1}{m(Sy, z)} \in P$. Hence $m(Sy, z) \in P \cap \frac{1}{P}$. By definition of multiplicative cone, we get that $m(Sy, z) = 1$, and so $Sy = fy = z$. Hence z is a point of coincidence of S and f .

Next, we show that z is unique. Suppose z' is another point of coincidence of S and f , that is, $Sx = fx = z'$, for some $x \in X$. Then

$$m(z, z') = m(Sy, Sx) \leq \varphi(m(fy, fx)) = \varphi(m(z, z')) < m(z, z').$$

Hence $z = z'$. Since S and f are weakly compatible, by Lemma 1.14, z is the unique common fixed point of S and f , and the proof is finished. \square

Corollary 2.2. *Let (X, m) be a multiplicative cone pentagonal metric space and P be a multiplicative normal cone with multiplicative normal constant k . Suppose the mappings $S, f : X \mapsto X$ satisfy the contractive condition*

$$m(Sx, Sy) \leq m(fx, fy)^\lambda$$

for all $x, y \in X$, where $\lambda \in [0, 1)$. Suppose that $S(X) \subseteq f(X)$ and $f(X)$ or $S(X)$ is a complete subspace of X , then the mappings S and f have a unique point of coincidence in X . Moreover, if S and f are weakly compatible, then S and f have a unique common fixed point in X .

Proof. Define $\varphi : P \mapsto P$ by $\varphi(t) = t^\lambda$. Then it is clear that φ satisfies the conditions in Definition 1.11. Hence the result follows from the above theorem. \square

Corollary 2.3. *Let (X, m) be a multiplicative cone pentagonal metric space. Suppose the mapping $S : X \mapsto X$ satisfy the following*

$$m(Sx, Sy) \leq \varphi(m(x, y))$$

for all $x, y \in X$, where $\varphi \in \Phi$. Then S has a unique fixed point in X .

Proof. Put $f = I$ in the above theorem, where I is the identity mapping. This completes the proof. \square

Corollary 2.4. Let (X, m) be a multiplicative cone pentagonal metric space and P be a multiplicative normal cone with multiplicative normal constant k . Suppose the mapping $S : X \mapsto X$ satisfies the contractive condition

$$m(Sx, Sy) \leq m(x, y)^\lambda$$

for all $x, y \in X$, where $\lambda \in [0, 1)$. Then S has a unique fixed point in X .

Proof. Put $f = I$ in Corollary 2.2, where I is the identity mapping. This completes the proof. \square

Example 2.5. Let $X = \{r, s, t, u, v\}$, $E = \mathbb{R}^2$, $P = \{(x, y) \in E : x, y \geq 1\}$ be a multiplicative cone in E , and $a > 1$ be a constant. Define $m : X^2 \mapsto E$ by

$$m(x, x) = 1,$$

$$m(r, s) = m(s, r) = (a^4, a^8),$$

$$m(r, t) = m(t, r) = m(t, u) = m(u, t) = m(s, t) = m(t, s) = m(s, u) = m(u, s) = m(r, u) = m(u, r) = (a, a^2),$$

$$m(r, v) = m(v, r) = m(s, v) = m(v, s) = m(t, v) = m(v, t) = m(u, v) = m(v, u) = (a^3, a^6).$$

Then (X, m) is a complete multiplicative cone pentagonal metric space, but (X, m) is not a complete cone multiplicative rectangular metric space because it lacks the multiplicative rectangular property:

$$(a^4, a^8) = m(r, s) > m(r, t) \cdot m(t, u) \cdot m(u, s) = (a^3, a^6).$$

Now we define mappings $S, f : X \mapsto X$ as follows:

$$S(x) = \begin{cases} u & \text{if } x \neq v \\ s & \text{if } x = v \end{cases}$$

$$f(x) = \begin{cases} t & \text{if } x = r \\ r & \text{if } x = s \\ s & \text{if } x = t \\ u & \text{if } x = u \\ v & \text{if } x = v \end{cases}$$

Clearly $S(X) \subseteq f(X)$, $f(X)$ is a complete subspace of X and the pair (S, f) is weakly compatible. The inequality $m(Sx, Sy) \leq \varphi(m(fx, fy))$ holds for all $x, y \in X$, where $\varphi(t) = t^{\frac{1}{3}}$ and $u \in X$ is the unique common fixed point of the mappings S and f .

3 Open Problems

The open problem is to prove or disprove the following

Conjecture 3.1. *Let (X, m) be a multiplicative cone pentagonal metric space. Suppose the mappings $S, f : X \mapsto X$ satisfy the contractive condition*

$$m(Sfx, Sfy) \leq \varphi(m(Sx, Sy))$$

for all $x, y \in X$, where $\varphi \in \Phi$. Suppose that S is one-to-one, $S(X)$ is a complete subspace of X , then the mapping f have a unique fixed point in X . Moreover, if S and f are commuting at the fixed point of f , then S and f have a unique common fixed point in X .

Conjecture 3.2. *Conjecture 3.1 holds in multiplicative cone rectangular metric space [4].*

References

- [1] Ampadu, C. B. (2019). A fixed point theorem of the Hardy and Rogers kind endowed with multiplicative cone-C class functions. *Earthline Journal of Mathematical Sciences*, 2(1), 169–179. <https://doi.org/10.34198/ejms.2119.169179>
- [2] Auwalu, A., & Hinçal, E. (2016). Common fixed points of two maps in cone pentagonal metric spaces. *Global Journal of Pure and Applied Mathematics*, 12(3), 2423–2435.
- [3] Abbas, M., & Jungck, G. (2008). Common fixed point results for non-commuting mappings without continuity in cone metric spaces. *Journal of Mathematical Analysis and Applications*, 341, 416–420. <https://doi.org/10.1016/j.jmaa.2007.09.070>
- [4] Ampadu, C. B. (2024). On a variant of the Banach contraction mapping theorem in multiplicative cone rectangular metric space. *JP Journal of Fixed Point Theory and Applications*, 20, 25–34. <https://doi.org/10.17654/0973422824002>
- [5] Garg, M., & Agarwal, S. (2012). Banach contraction principle on cone pentagonal metric space. *Journal of Advanced Studies in Topology*, 3(1), 12–18. <https://doi.org/10.20454/jast.2012.230>
- [6] Bashirov, A., Kurpinar, E., & Ozyapici, A. (2008). Multiplicative calculus and its applications. *Journal of Mathematical Analysis and Applications*, 337(1), 36–48. <https://doi.org/10.1016/j.jmaa.2007.03.081>

This is an open access article distributed under the terms of the Creative Commons Attribution License (<http://creativecommons.org/licenses/by/4.0/>), which permits unrestricted, use, distribution and reproduction in any medium, or format for any purpose, even commercially provided the work is properly cited.
