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Abstract 

The objective of the present work is to investigate a specific family of uniformly meromorphic of multivalent 

functions defined in �∗ associated with multiplier transformations. We get some results for this class, like, 

coefficient estimates, distortion theorem, closure theorem and radii of starlike. 

1. Introduction 

Assume that ℧� be the family of functions that take the following type: 

���� 	 
���� 
 � 
����
����� 
� � 0,    
�  � 0,  � ∈ � 	 �1,2, … �,                              �1� 

that are multivalent meromorphic in �∗ 	 �� ∈ ℂ, 0  |�|  1� 	 " �0�⁄ .  

For $ ∈ ℤ , ℓ � 0, ' � 0 and � ∈ ℧�, the multiplier transformations (�)�ℓ, '� ∶ ℧� ⟶ ℧� is defined by (see 

[4]) 

(�)�ℓ, '����� 	 
���� 
 � ,-ℓ 
 '�$ 
 ��.ℓ /) 
����
�����  .                                   �2� 

A function � ∈ ℧� is named multivalent meromorphic starlike function of order 1 whenever it satisfies the 

condition 

234 5� �6������� 7 � 1 ,           �� ∈ �∗ ;     0 9 1  ��,                                               �3� 

and is named multivalent meromorphic convex functions of order 1 whenever it satisfies the condition 

234 5� �66����6��� 
 17 � 1 ,       �� ∈ �∗;    0 9 1  ��.                                            �4� 

We define <�=, ℓ, ', >, �� as the family of functions in ℧� that fulfill the condition stated below: 

34 ?2 @ � -(�)�ℓ, '�����.66
�1 
 ��-(�)�ℓ, '�����.6 
 =AB � C � -(�)�ℓ, '�����.66

�1 
 ��-(�)�ℓ, '�����.6 
 = 
 2C,                     �5� 

where  0  =  1, $ ∈ ℤ , ℓ � 0, ' � 0.  
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A number of studies have lately focused on analyzing subclasses of meromorphic functions, as documented 

in references [1,2,3,5,6,7,8,9,10]. 

2. Coefficient Estimates 

Theorem 1. Let � ∈ ℧�. Then  � ∈ <�=, ℓ, ', >, ��, iff 

� $E�� 
 1��= 
 1� 
 �$ 2 1�F ,-ℓ 
 '�$ 
 ��.ℓ /) 
� 9 
���� 
 1�=�
����� .                  �6� 

Sharpness of the result is attained for the function � described as 

���� 	 
���� 
 
���� 
 1�=$E�� 
 1��= 
 1� 
 �$ 2 1�F H-ℓI'��I��.ℓ J) ���� ,   $ � 1 2 �.              �7� 

Proof. Suppose that � ∈ <�=, ℓ, ', >, ��. Then 

34 ?2 @ � -(�)�ℓ, '�����.66
�� 
 1�-(�)�ℓ, '�����.6 
 =AB � C � -(�)�ℓ, '�����.66

�� 
 1�-(�)�ℓ, '�����.6 
 = 
 2C. 
But 

34 ? � -(�)�ℓ, '�����.66
�� 
 1�-(�)�ℓ, '�����.6 
 =B 9 C � -(�)�ℓ, '�����.66

�� 
 1�-(�)�ℓ, '�����.6 
 = 
 2C
9  34 ?2 @ � -(�)�ℓ, '�����.66

�1 
 ��-(�)�ℓ, '�����.6 
 =AB, 
that is    

34 ? � -(�)�ℓ, '�����.66
�1 
 ��-(�)�ℓ, '�����.6 
 2�= 
 1�B 9 0, 

by (2) we get 

� $E�� 
 1��= 
 1� 
 �$ 2 1�F ,-ℓ 
 '�$ 
 ��.ℓ /) 
� 9 
���� 
 1�=�
�����  

34 L22��� 
 1�=
������ 
 ∑ 2$E�$ 2 1� 
 �� 
 1��= 
 1�F H-ℓI'��I��.ℓ J) 
�����������2�
��� 
 1������ 
 ∑ $�� 
 1� H-ℓI'��I��.ℓ J) 
����������� N 9 0. 
Letting � to take real values as � → 1�, we get 

22��� 
 1�=
� 
 ∑ 2$E�$ 2 1� 
 �� 
 1��= 
 1�F H-ℓI'��I��.ℓ J) 
�������2�
��� 
 1� 
 ∑ $�� 
 1� H-ℓI'��I��.ℓ J) 
�������  9 0, 



Some Results on Subclasses of Multivalent and Meromorphic Functions … 

Earthline J. Math. Sci. Vol. 16 No. 1 (2026), 141-146 

143

that is 

22��� 
 1�=
� 
 � 2$E�$ 2 1� 
 �� 
 1��= 
 1�F ,-ℓ 
 '�$ 
 ��.ℓ /) 
�
�

����� 9 0, 
which is equivalent to (6). 

On the other hand, if we assume that inequality (6) holds, we deduce that 

C � -(�)�ℓ, '�����.66
�� 
 1�-(�)�ℓ, '�����.6 
 = 
 2C 	 P

P 22��� 
 1��= 
 2�
� �����

 ∑ $ Q2�$ 2 1� 
 �= 
 2��� 
 1� H-ℓI'��I��.ℓ J)R 
�����������

2�
��� 
 1������  
 ∑ $�� 
 1� H-ℓI'��I��.ℓ J) 
����������� P
P

9
22��� 
 1��= 
 2�
� 2 ∑ $ Q2�$ 2 1� 
 �= 
 2��� 
 1� H-ℓI'��I��.ℓ J)R 
���I�������

2�
��� 
 1� 
 ∑ $�� 
 1� H-ℓI'��I��.ℓ J) 
���I�������  . 
Taking the limit as � → 1� along the real axis yields the required inequality (6). Therefore, the proof of 

Theorem 1 is established. 

Corollary 1. If  � ∈ <�=, ℓ, ', >, ��,  then    


� 9 ��� 
 1�=
� $E�$ 2 1� 
 �� 
 1��= 
 1�F H-ℓI'��I��.ℓ J)     �$, � ∈ � 	 �1,2, … ��.                       �8�  
Theorem 2. Let � ∈ <�=, ℓ, ', >, ��. Then 
�T� 2 ��� 
 1�=�1 2 ��E2� 
 �� 
 1��= 
 1�F HℓI'ℓ J) T��� 9 |����| 9 
�T� 
 ��� 
 1�=�1 2 ��E2� 
 �� 
 1��= 
 1�F HℓI'ℓ J) T��� . 
Proof. Since � ∈ <�=, ℓ, ', >, ��, we get 

�1 2 ��E2� 
 �� 
 1��= 
 1�F Uℓ 
 'ℓ V) � 
�
�

�����
9 � $E�$ 2 1� 
 �� 
 1��= 
 1�F ,-ℓ 
 '�$ 
 ��.ℓ /) 
�

�
����� 9 ��� 
 1�=.  

We have 

|����| 	 
�|�|� 
 � 
�|�|��
����� 9 
�|�|� 
 |�|��� � 
�

�
����� 9 
�T� 
 ��� 
 1�=�1 2 ��E2� 
 �� 
 1��= 
 1�F HℓI'ℓ J) T���. 

Also, similarly, we have 

|����| � 
�T� 2 ��� 
 1�=�1 2 ��E2� 
 �� 
 1��= 
 1�F HℓI'ℓ J) T���. 
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Sharpness of the result is attained for the function � described as 

���� 	 
���� 
 
���� 
 1�=�1 2 ��E2� 
 �� 
 1��= 
 1�F HℓI'ℓ J) ���� ,   � ∈ �. 
Now, let us consider the functions �W���, defined for  X 	 1,2, … , Y, by 

�W��� 	 
�,W��� 
 � 
�,W��    -
�,W � 0, 
�,W � 0, � ∈ � 	 �1,2, … �..                             �9�
����� � 

Theorem 3. Assume that the functions �W��� defined by (9) lies in the family <�=, ℓ, ', >, �� for X 	 1,2, … , Y. 
Then the function ℎ��� defined as 

ℎ��� 	 
�,W��� 
 � \����
�����  

is also in the family <�=, ℓ, ', >, ��, where 

\� 	 1Y � 
�,W
]

W�� . 
Proof. Since �W��� ∈ <�=, ℓ, ', >, �� �X 	 1,2, … , Y�  and by Theorem 1, we obtain 

� $E�$ 2 1� 
 �� 
 1��= 
 1�F ,-ℓ 
 '�$ 
 ��.ℓ /) 
�,W
�

����� 9 ��� 
 1�=.  
Hence 

� $E�$ 2 1� 
 �� 
 1��= 
 1�F ,-ℓ 
 '�$ 
 ��.ℓ /)�
����� \�

	 � $E�$ 2 1� 
 �� 
 1��= 
 1�F ,-ℓ 
 '�$ 
 ��.ℓ /)�
����� ^1Y � 
�,W

]
W�� _

	 1Y �]
W�� � $E�$ 2 1� 
 �� 
 1��= 
 1�F ,-ℓ 
 '�$ 
 ��.ℓ /)�

����� 
�,W 9 ��� 
 1�=. 
This shows that ℎ��� ∈ <�=, ℓ, ', >, ��. 

Theorem 4. Let � be an element of <�=, ℓ, ', >, ��. Then � is multivalent meromorphic starlike of order `�0 9`  1� in the region |�|  3� such that  

3� 	 inf� L$�� 2 `�E�� 
 1��= 
 1� 
 �$ 2 1�F H-ℓI'��I��.ℓ J)
��� 
 1�=�$ 
 `� N

def� . 
The obtained result is exact for the function � defined in (7). 
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Proof. It is enough to demonstrate that   

g��6������� 
 �g 9 � 2 `      for  |�|  3�.                                                        �10� 
But  

g��6������� 
 �g 	 g��6��� 
 ��������� g 9 ∑ �$ 
 ��
�|�|���������1 
 ∑ 
�|�|��������� . 
Thus (10) will be satisfied if  

∑ �$ 
 ��
�|�|���������
� 
 ∑ 
�|�|��������� 9 � 2 `, 
or if   

� $ 
 `
��� 2 `� 
�|�|��� 9 1.�
�����                                                                   �11� 

Since � ∈ <�=, ℓ, ', >, ��, we have 

� $E�� 
 1��= 
 1� 
 �$ 2 1�F H-ℓI'��I��.ℓ J)

���� 
 1�= 
� 9�

����� 1. 
Hence (11) will be true if  

$ 
 `
��� 2 `� |�|��� 9 $E�� 
 1��= 
 1� 
 �$ 2 1�F H-ℓI'��I��.ℓ J)

���� 
 1�= , 

or equivalently 

|�| 9 L$�� 2 `�E�� 
 1��= 
 1� 
 �$ 2 1�F H-ℓI'��I��.ℓ J)
��� 
 1�=�$ 
 `� N

def�     �$ � 1 2 ��, 
which is an immediate consequence of the result. 

Theorem 5. The family <�=, ℓ, ', >, �� is a convex set. 

Proof. Consider �� and �j as arbitrary elements of <�=, ℓ, ', >, ��. Then for each k �0 9 k 9 1�, we show that  �1 2 k��� 
 k�j ∈ <�=, ℓ, ', >, ��. Thus, we have 

�1 2 k��� 
 k�j 	 
���� 
 � E�1 2 k�
� 
 kl�F���
�����  . 

Hence 

� $E�� 
 1��= 
 1� 
 �$ 2 1�F ,-ℓ 
 '�$ 
 ��.ℓ /) E�1 2 k�
� 
 kl�F�
�����  

	 �1 2 k� � $E�� 
 1��= 
 1� 
 �$ 2 1�F ,-ℓ 
 '�$ 
 ��.ℓ /) 
�
�

�����  
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 k � $E�� 
 1��= 
 1� 
 �$ 2 1�F ,-ℓ 
 '�$ 
 ��.ℓ /) l�
�

�����  

9 �1 2 k�
���� 
 1�= 
 k
���� 
 1�= 	 
���� 
 1�=.  
Hence, the proof is established. 
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