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Abstract 

This study investigates a specific subclass of multivalent functions defined via the application of a generalized 

derivative operator. Various associated properties are examined, including coefficient inequalities, growth and 

distortion estimates, the characterization of extreme points, and the determination of radii of close-to-convexity, 

starlikeness, and convexity for these subclasses. 

1. Introduction 

Let 𝑃(𝑝) represent the class of functions characterized by the following form: 

𝑓(𝑧) = 𝑧𝑝 + ∑ 𝑎𝑗𝑧𝑗

∞

𝑗=𝑝+1

,     (𝑧 ∈ 𝑈, 𝑎𝑗 ≥ 0, 𝑝 ∈ ℕ = {1,2,3, … }).                            (1.1) 

This class includes all analytic and 𝑝-valent functions in the open unit disk 𝐷 = {𝑧 ∈ ℂ: |𝑧| < 1}. Let 𝐸(𝑝) 

denote a specific subclass of 𝑃(𝑝). 

The Hadamard product (also known as convolution) 𝑓 ∗ 𝑔 of two analytic functions, 𝑓, as defined by (1.1), 

and 𝑔(𝑧), given by: 

𝑔(𝑧) = 𝑧𝑝 + ∑ 𝑏𝑗𝑧𝑗                                                                             (1.2)

∞

𝑗=𝑝+1

 

is defined as  

𝑓(𝑧) ∗ 𝑔(𝑧) = (𝑓 ∗ 𝑔)(𝑧) = 𝑧𝑝 + ∑ 𝑎𝑗𝑏𝑗𝑧𝑗,    (𝑧 ∈ 𝑈, 𝑝 ∈ ℕ).                               (1.3)

∞

𝑗=𝑝+1

 

A function 𝑓 belonging to the class 𝑃(𝑝), is said to be multivalent starlike of order 𝜕, multivalent convex of 

order 𝜕, and multivalent close-to-convex of order 𝜕 under the following conditions: (𝑝 ∈ ℕ, 0 ≤ 𝜕 < 𝑝, 𝑧 ∈ 𝐷), 

where each characterization holds according to its respective mathematical definition: 
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𝑅𝑒 {
𝑧 𝑓′(𝑧)

𝑓(𝑧)
} > 𝜕, 𝑅𝑒 {1 +

𝑧𝑓′′(𝑧)

𝑓′(𝑧)
} > 𝜕       and        𝑅𝑒 {

𝑓′(𝑧)

𝑓𝑝−1 } > 𝜕. 

Elhaddad and Darus [3] proposed the following operator: 

For a function 𝑓 belonging to the class 𝑃(𝑝), the following relation holds: 

𝑂̃𝜆,𝑝
𝑚 (𝜐, 𝑒, 𝑎1, 𝑏1)𝑓(𝑧) = 𝑧𝑝 + ∑ [

𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚 Γ(𝑒)

Γ(𝜐(𝑗 − 𝑝) + 𝑒)
(

∏ (𝑎𝑛)𝑗−𝑝
𝑠
𝑛=1

∏ (𝑏𝑖)𝑗−𝑝
𝑟
𝑖=1

)
𝑎𝑗𝑧𝑗

(𝑗 − 𝑝)!
 ,     (1.4)

∞

𝑗=𝑝+1

 

where 𝑎𝑛 ∈ ℂ, 𝑏𝑖 ∈ ℂ − {0, −1, −2, … } (𝑖 = 1, … . , 𝑟, 𝑛 = 1, … , 𝑠), and 𝑠 ≤ 𝑟 + 1. 

For simplicity, we rewrite the above expression as 

𝑂̃𝜆,𝑝
𝑚 (𝜐, 𝑒, 𝑎1, 𝑏1)𝑓(𝑧) = 𝑧𝑝 + ∑ [

𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚 𝛶(𝑗−𝑝,𝜐,e)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
𝑎𝑗𝑧𝑗

∞

𝑗=𝑝+1

,                       (1.5) 

where 𝑚 ∈ ℕ0 = ℕ ∪ {0}, 𝜆 ≥ 0 and 𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟), is defined by 

𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟) =
Γ(𝑒)

Γ(𝜐(𝑗 − 𝑝) + 𝑒)
(

∏ (𝑎𝑛)𝑗−𝑝
𝑠
𝑛=1

∏ (𝑏𝑖)𝑗−𝑝
𝑟
𝑖=1

).                                           (1.6) 

For further details regarding this operator, see [2]. 

By employing the operator defined in Equation (1.5), we introduce the following class of analytic and 

multivalent functions. 

Definition 1.1. A function 𝑓 ∈ 𝑃(𝑝) is said to belong to the class 𝑃(𝑝, 𝛾, 𝜆) if  

|
(2 − 𝑝)𝑧[𝑂̃𝜆,𝑝

𝑚 (𝜐, 𝑒, 𝑎1, 𝑏1)𝑓(𝑧)]′′ + 𝑧2[𝑂̃𝜆,𝑝
𝑚 (𝜐, 𝑒, 𝑎1, 𝑏1)𝑓(𝑧)]′′′

(3𝜆 − 𝛾)𝑧[𝑂̃𝜆,𝑝
𝑚 (𝜐, 𝑒, 𝑎1, 𝑏1)𝑓(𝑧)]

′′
+ 𝜆𝑧2[𝑂̃𝜆,𝑝

𝑚 (𝜐, 𝑒, 𝑎1, 𝑏1)𝑓(𝑧)]′′′
| < 1,                      (1.7) 

where (𝑝 ≥ 1,
1

2
≤ 𝛾 < 1,0 ≤ 𝜆 ≤

1

2
) , 𝑎1 ∈ ℂ, 𝑏1 ∈ ℂ\{0, −1, −2, … }, |𝑧| < 1, 𝜐, 𝑒 ∈ ℂ, 𝑅𝑒(𝜐) > 0,

𝑅𝑒(𝑒) > 0, 𝑚 ∈ ℕ0 = ℕ ∪ {0}. 

Numerous authors have examined various classes of analytic and multivalent functions, including their 

coefficients estimates, as documented in Refs. [1], [2], [4], [5], [6], [7], [8], [9], and [10]. In this study, we focus 

on analyzing and investigating the class 𝑃(𝑝, 𝛾, 𝜆) of analytic and multivalent functions. Additionally, several 

properties, such as coefficient bounds, growth and distortion theorems, inclusion properties, and extreme points 

for functions in this class, are established. 

2. Geometric Properties for 𝑷(𝒑, 𝜸, 𝝀) 

In this section, we present theorems along with their proofs to explore certain geometric properties associated 

with the class 𝑃(𝑝, 𝛾, 𝜆). 

Theorem 2.1. A function 𝑓, as defined in equation (1.1), belongs to the class 𝑃(𝑝, 𝛾, 𝜆) if and only if it satisfies 

the following condition: 

∑ [𝑝 − 𝑗 − 𝛾 + 𝜆(𝑗 + 1)]𝑗(𝑗 − 1) [
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚∞

𝑗=𝑝+1

𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
|𝑎𝑗| ≤ [𝜆(1 + 𝑝) − 𝛾(𝑝 − 1)],    (1.8) 
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where (𝑝 ≥ 1,
1

2
≤ 𝛾 < 1,0 < 𝜆 ≤

1

2
)  and 𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟) is given by (1.6). 

The result is sharp for the function:      

𝑓(𝑧) = 𝑧𝑝 +
[𝜆(1 + 𝑝) − 𝛾]𝑝(𝑝 − 1)(𝑗 − 𝑝)!

[𝑝 − 𝑗 − 𝛾 + 𝜆(𝑗 + 1)]𝑗(𝑗 − 1)𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟) [
𝑝+(𝑗−𝑝)𝜆

𝑝
]

𝑚 𝑧𝑗.                   (1.9) 

Proof. Suppose that 𝑓 ∈ 𝑃(𝑝, 𝛾, 𝜆). Then, by (1.7), we have: 

|
(2 − 𝑝)𝑧[𝑂̃𝜆,𝑝

𝑚 (𝜐, 𝑒, 𝑎1, 𝑏1)𝑓(𝑧)]
′′

+ 𝑧2[𝑂̃𝜆,𝑝
𝑚 (𝜐, 𝑒, 𝑎1, 𝑏1)𝑓(𝑧)]

′′′

(3𝜆 − 𝛾)𝑧[𝑂̃𝜆,𝑝
𝑚 (𝜐, 𝑒, 𝑎1, 𝑏1)𝑓(𝑧)]

′′
+ 𝜆𝑧2[𝑂̃𝜆,𝑝

𝑚 (𝜐, 𝑒, 𝑎1, 𝑏1)𝑓(𝑧)]
′′′| < 1 

= |(3𝜆 − 𝛾)𝑧[𝑂̃𝜆,𝑝
𝑚 (𝜐, 𝑒, 𝑎1, 𝑏1)𝑓(𝑧)]

′′
+ 𝜆𝑧2[𝑂̃𝜆,𝑝

𝑚 (𝜐, 𝑒, 𝑎1, 𝑏1)𝑓(𝑧)]
′′′

| 

− |(2 − 𝑝)𝑧[𝑂̃𝜆,𝑝
𝑚 (𝜐, 𝑒, 𝑎1, 𝑏1)𝑓(𝑧)]

′′
+ 𝑧2[𝑂̃𝜆,𝑝

𝑚 (𝜐, 𝑒, 𝑎1, 𝑏1)𝑓(𝑧)]
′′′

|. 

= |(3𝜆 − 𝛾 − 2 + 𝑝)𝑧[𝑂̃𝜆,𝑝
𝑚 (𝜐, 𝑒, 𝑎1, 𝑏1)𝑓(𝑧)]

′′
| + |(𝜆 − 1)𝑧2[𝑂̃𝜆,𝑝

𝑚 (𝜐, 𝑒, 𝑎1, 𝑏1)𝑓(𝑧)]
′′′

| 

= |(3𝜆 − 𝛾 − 2 + 𝑝)𝑧 [𝑝(𝑝 − 1)𝑧𝑝−2 + 𝑗(𝑗 − 1) ∑ [
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚 𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
𝑎𝑗𝑧𝑗−2

∞

𝑗=𝑝+1

]| 

+ |(𝜆 − 1)𝑧2 [𝑝(𝑝 − 1)(𝑝 − 2)𝑧𝑝−3 + 𝑗(𝑗 − 1)(𝑗 − 2) ∑ [
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚 𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
𝑎𝑗𝑧𝑗−3

∞

𝑗=𝑝+1

]| 

= |(3𝜆 − 𝛾 − 2 + 𝑝)𝑝(𝑝 − 1)𝑧𝑝−1 + (3𝜆 − 𝛾 − 2 + 𝑝)𝑗(𝑗

− 1) ∑ [
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚 𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
𝑎𝑗𝑧𝑗−1

∞

𝑗=𝑝+1

| 

+ |(𝜆 − 1)𝑝(𝑝 − 1)(𝑝 − 2)𝑧𝑝−1 + (𝜆 − 1)𝑗(𝑗 − 1)(𝑗 − 2) ∑ [
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚 𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
𝑎𝑗𝑧𝑗−1

∞

𝑗=𝑝+1

| 

= |[𝜆(1 + 𝑝) − 𝛾]𝑝(𝑝 − 1)𝑧𝑝−1

+ ∑ [𝑝 − 𝑗 − 𝛾 + 𝜆(𝑗 + 1)]𝑗(𝑗 − 1) [
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚 𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
𝑎𝑗𝑧𝑗−1

∞

𝑗=𝑝+1

| 

≤ [𝜆(1 + 𝑝) − 𝛾]𝑝(𝑝 − 1)|𝑧𝑝−1|

+ ∑ [𝑝 − 𝑗 − 𝛾 + 𝜆(𝑗 + 1)]𝑗(𝑗 − 1) [
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚 𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
|𝑎𝑗||𝑧𝑗−1|

∞

𝑗=𝑝+1

 

≤ |𝑧𝑝−1| + ∑
[𝑝 − 𝑗 − 𝛾 + 𝜆(𝑗 + 1)]𝑗(𝑗 − 1)

[𝜆(1 + 𝑝) − 𝛾]𝑝(𝑝 − 1)
[
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚∞

𝑗=𝑝+1

𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
|𝑎𝑗||𝑧𝑗−1| ≤ 1 
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𝜆 ≥ 0,  𝑗 > 𝑝,
𝑝+(𝑗−𝑝)𝜆

𝑝
> 0, (𝑗 − 𝑝)! > 0 and 𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟) is given by (1.6). 

∑ [𝑝 − 𝑗 − 𝛾 + 𝜆(𝑗 + 1)]𝑗(𝑗 − 1) [
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚∞

𝑗=𝑝+1

𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
|𝑎𝑗| ≤ [𝜆(1 + 𝑝) − 𝛾]𝑝(𝑝 − 1). 

Conversely, assume that condition (1.8) holds for |𝑧| = 𝑠, where 𝑠 < 1, then 

|(3𝜆 − 𝛾)𝑧[𝑂̃𝜆,𝑝
𝑚 (𝜐, 𝑒, 𝑎1, 𝑏1)𝑓(𝑧)]

′′
+ 𝜆𝑧2[𝑂̃𝜆,𝑝

𝑚 (𝜐, 𝑒, 𝑎1, 𝑏1)𝑓(𝑧)]
′′′

| 

− |(2 − 𝑝)𝑧[𝑂̃𝜆,𝑝
𝑚 (𝜐, 𝑒, 𝑎1, 𝑏1)𝑓(𝑧)]

′′
+ 𝑧2[𝑂̃𝜆,𝑝

𝑚 (𝜐, 𝑒, 𝑎1, 𝑏1)𝑓(𝑧)]
′′′

| 

= |(3𝜆 − 𝛾 − 2 + 𝑝)𝑧[𝑂̃𝜆,𝑝
𝑚 (𝜐, 𝑒, 𝑎1, 𝑏1)𝑡(𝑧)]

′′
| + |(𝜆 − 1)𝑧2[𝑂̃𝜆,𝑝

𝑚 (𝜐, 𝑒, 𝑎1, 𝑏1)𝑡(𝑧)]
′′′

| 

= |(3𝜆 − 𝛾 − 2 + 𝑝)𝑧 [𝑝(𝑝 − 1)𝑧𝑝−2 + 𝑗(𝑗 − 1) ∑ [
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚 𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑑 − 𝑝)!
𝑎𝑗𝑧𝑗−2

∞

𝑗=𝑝+1

]| 

+ |(𝜆 − 1)𝑧2 [𝑝(𝑝 − 1)(𝑝 − 2)𝑧𝑝−3 + 𝑗(𝑗 − 1)(𝑗 − 2) ∑ [
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚 𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
𝑎𝑗𝑧𝑗−3

∞

𝑗=𝑝+1

]| 

= |(3𝜆 − 𝛾 − 2 + 𝑝)𝑝(𝑝 − 1)𝑧𝑝−1 + (3𝜆 − 𝛾 − 2 + 𝑝)𝑗(𝑗

− 1) ∑ [
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚 𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
𝑎𝑗𝑧𝑗−1

∞

𝑗=𝑝+1

| 

+ |(𝜆 − 1)𝑝(𝑝 − 1)(𝑝 − 2)𝑧𝑝−1 + (𝜆 − 1)𝑗(𝑗 − 1)(𝑗 − 2) ∑ [
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚 𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
𝑎𝑗𝑧𝑗−1

∞

𝑗=𝑝+1

| 

= |[𝜆(1 + 𝑝) − 𝛾]𝑝(𝑝 − 1)𝑧𝑗−1

+ ∑ [𝑝 − 𝑗 − 𝛾 + 𝜆(𝑗 + 1)]𝑗(𝑗 − 1) [
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚 𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
𝑎𝑗𝑧𝑗−1

∞

𝑗=𝑝+1

| 

≤ [𝜆(1 + 𝑝) − 𝛾]𝑝(𝑝 − 1)|𝑧𝑗−1|

+ ∑ [𝑝 − 𝑗 − 𝛾 + 𝜆(𝑗 + 1)]𝑗(𝑗 − 1) [
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚 𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
|𝑎𝑗||𝑧𝑗−1|

∞

𝑗=𝑝+1

 

≤ |𝑧𝑝−1| + ∑
[𝑝 − 𝑗 − 𝛾 + 𝜆(𝑗 + 1)]𝑗(𝑗 − 1)

[𝜆(1 + 𝑝) − 𝛾]𝑝(𝑝 − 1)
[
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚∞

𝑗=𝑝+1

𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
|𝑎𝑗||𝑧𝑗−1| 

∑ [𝑝 − 𝑗 − 𝛾 + 𝜆(𝑗 + 1)]𝑗(𝑗 − 1) [
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚∞

𝑗=𝑝+1

𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
|𝑎𝑗| ≤ [𝜆(1 + 𝑝) − 𝛾]𝑝(𝑝 − 1), 
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where |𝑎𝑗| is given by (1.8). So, we have: 

∑ [𝑝 − 𝑗 − 𝛾 + 𝜆(𝑗 + 1)]𝑗(𝑗 − 1) [
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚∞

𝑗=𝑝+1

𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
|𝑎𝑗| − [𝜆(1 + 𝑝) − 𝛾]𝑝(𝑝 − 1) ≤ 0. 

Thus, 𝑓 ∈ 𝑃(𝑝, 𝛾, 𝜆), and the theorem is thereby proven. ◻ 

Corollary 2.2. Let 𝑓 ∈ 𝑃(𝑝, 𝛾, 𝜆). Then, 

𝑎𝑗 ≤
[𝜆(1 + 𝑝) − 𝛾]𝑝(𝑝 − 1)(𝑗 − 𝑝)!

[𝑝 − 𝑗 − 𝛾 + 𝜆(𝑗 + 1)]𝑗(𝑗 − 1)𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟) [
𝑝+(𝑗−𝑝)𝜆

𝑝
]

𝑚 ,                        (1.10) 

where, (𝑗 = 𝑝 + 1, 𝑝 + 2, … ) (𝑝 ≥ 1,
1

2
≤ 𝛾 < 1,0 < 𝜆 ≤

1

2
). 

3. Growth and Distortion Theorems 

The bounds for |𝑓(𝑧)| and |𝑓′(𝑧)| will be established through the following theorems, which specifically 

pertain to multivalent functions 𝑓(𝑧) expressed in the form. 

𝑓(𝑧) = 𝑧𝑝 +
[𝜆(1 + 𝑝) − 𝛾]𝑝(𝑝 − 1)

[𝜆(𝑝 + 2) − (1 + 𝛾)]𝑝(1 + 𝑝)𝛶(1,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟) [
𝑝+𝜆

𝑝
]

𝑚 𝑧𝑝+1. 

Theorem 3.1. If the function 𝑓 belongs to the class 𝑃(𝑝, 𝛾, 𝜆), as defined in Equation 1.2, then for |𝑧| = 𝑠 < 1, 

𝑠𝑝 − 𝑠𝑝+1
[𝜆(1 + 𝑝) − 𝛾]𝑝(𝑝 − 1)

[𝜆(𝑝 + 2) − (1 + 𝛾)]𝑝(1 + 𝑝)𝛶(1,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟) [
𝑝+𝜆

𝑝
]

𝑚 ≤ |𝑓(𝑧)| 

≤ 𝑠𝑝 + 𝑠𝑝+1
[𝜆(1 + 𝑝) − 𝛾]𝑝(𝑝 − 1)

[𝜆(𝑝 + 2) − (1 + 𝛾)]𝑝(1 + 𝑝)𝛶(1,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟) [
𝑝+𝜆

𝑝
]

𝑚 . 

Proof. By considering Theorem 2.1, we obtain 

∑
[𝑝 − 𝑗 − 𝛾 + 𝜆(𝑗 + 1)]𝑗(𝑗 − 1)

[𝜆(1 + 𝑝) − 𝛾]𝑝(𝑝 − 1)
[
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚∞

𝑗=𝑝+1

𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
|𝑎𝑗| ≤ 1. 

Using the specific characteristics of analytic 𝑝-valent functions, we also have 

[𝛾 − 𝜆(𝑗 + 1)]𝑗(𝑗 − 1)

[𝜆(1 + 𝑝) − 𝛾]𝑝(𝑝 − 1)
[
𝑝 + 𝜆

𝑝
]

𝑚

𝛶(1,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟) ∑ |𝑎𝑗|

∞

𝑗=𝑝+1

 

≤ ∑
[𝑝 − 𝑗 − 𝛾 + 𝜆(𝑗 + 1)]𝑗(𝑗 − 1)

[𝜆(1 + 𝑝) − 𝛾]𝑝(𝑝 − 1)
[
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚∞

𝑗=𝑝+1

𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
|𝑎𝑗| ≤ 1. 

Hence, we have 

∑ |𝑎𝑗| ≤
[𝜆(1 + 𝑝) − 𝛾]𝑝(𝑝 − 1)

[𝜆(𝑝 + 2) − (1 + 𝛾)]𝑝(1 + 𝑝)𝛶(1,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟) [
𝑝+𝜆

𝑝
]

𝑚

∞

𝑗=𝑝+1

 . 
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From (1.1), we have  

|𝑓(𝑧)| = |𝑧𝑝 + ∑ 𝑎𝑗𝑧𝑗

∞

𝑗=𝑝+1

| ≤ |𝑧𝑝| + |𝑧𝑝+1| ∑ |𝑎𝑗|

∞

𝑗=𝑝+1

≤  𝑠𝑝 + 𝑠𝑝+1 ∑ |𝑎𝑗|

∞

𝑗=𝑝+1

 

≤ 𝑠𝑝 +
[𝜆(1 + 𝑝) − 𝛾]𝑝(𝑝 − 1)

[𝜆(𝑝 + 2) − (1 + 𝛾)]𝑝(1 + 𝑝)𝛶(1,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟) [
𝑝+𝜆

𝑝
]

𝑚 𝑠𝑝+1. 

Similarly, the opposing argument can be demonstrated as follows: 

|𝑓(𝑧)| = |𝑧𝑝 + ∑ 𝑎𝑗𝑧𝑗

∞

𝑗=𝑝+1

| ≥ |𝑧𝑝| − |𝑧𝑝+1| ∑ |𝑎𝑗| ≥

∞

𝑗=𝑝+1

𝑠𝑝 − 𝑠𝑝+1 ∑ |𝑎𝑗|

∞

𝑗=𝑝+1

 

≥ 𝑠𝑝 −
[𝜆(1 + 𝑝) − 𝛾]𝑝(𝑝 − 1)

[𝜆(𝑝 + 2) − (1 + 𝛾)]𝑝(1 + 𝑝)𝛶(1,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟) [
𝑝+𝜆

𝑝
]

𝑚 𝑠𝑝+1. 

This concludes the proof. ◻ 

Theorem 3.2. If 𝑓 ∈ 𝐿𝜐,𝑒
𝑚 (𝑎𝑠, 𝑏𝑟, 𝜆; 𝑗, 𝑝), then for |𝑧| = 𝑠, 𝑠 < 1, we have 

𝑝𝑠𝑝−1 −
[𝜆(1 + 𝑝) − 𝛾]𝑝(𝑝 − 1)

[𝜆(𝑝 + 2) − (1 + 𝛾)]𝑝(1 + 𝑝)𝛶(1,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟) [
𝑝+𝜆

𝑝
]

𝑚 𝑠𝑝 ≤ |𝑓′(𝑧)| 

≤ 𝑝𝑠𝑝−1 +
[𝜆(1 + 𝑝) − 𝛾]𝑝(𝑝 − 1)

[𝜆(𝑝 + 2) − (1 + 𝛾)]𝑝(1 + 𝑝)𝛶(1,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟) [
𝑝+𝜆

𝑝
]

𝑚 𝑠𝑝. 

Proof. Let 𝑓 ∈ 𝐿𝜐,𝑒
𝑚 (𝑎𝑠, 𝑏𝑟, 𝜆; 𝑗, 𝑝). Then, from (1.8), we have  

∑ |𝑎𝑗|

∞

𝑗=𝑝+1

≤
[𝜆(1 + 𝑝) − 𝛾]𝑝(𝑝 − 1)

[𝜆(𝑝 + 2) − (1 + 𝛾)]𝑝(1 + 𝑝)𝛶(1,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟) [
𝑝+𝜆

𝑝
]

𝑚. 

Also, from (1.1), we have 

|𝑓′(𝑧)| = |𝑝𝑧𝑝−1 + ∑ 𝑗𝑎𝑗𝑧𝑗−1

∞

𝑗=𝑝+1

| ≤  𝑝𝑠𝑝−1 + (𝑝 + 1)𝑠𝑝 ∑ |𝑎𝑗|

∞

𝑗=𝑝+1

 

≤ 𝑝𝑠𝑝−1 +
[𝜆(1 + 𝑝) − 𝛾]𝑝(𝑝 − 1)

[𝜆(𝑝 + 2) − (1 + 𝛾)]𝑝(1 + 𝑝)𝛶(1,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟) [
𝑝+𝜆

𝑝
]

𝑚 𝑠𝑝. 

Similarly, by reversing the inequality, we have  

|𝑓′(𝑧)| = |𝑝𝑧𝑝−1 + ∑ 𝑗𝑎𝑗𝑧𝑗−1

∞

𝑗=𝑝+1

|  ≥  𝑝𝑠𝑝−1 − (𝑝 + 1)𝑠𝑝 ∑ |𝑎𝑗|

∞

𝑗=𝑝+1

 

≥ 𝑝𝑠𝑝−1 −
[𝜆(1 + 𝑝) − 𝛾]𝑝(𝑝 − 1)

[𝜆(𝑝 + 2) − (1 + 𝛾)]𝑝(1 + 𝑝)𝛶(1,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟) [
𝑝+𝜆

𝑝
]

𝑚 𝑠𝑝. 

This completes the proof. ◻ 
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4. Radii of Starlikeness, Convexity and Close-to-Convexity 

In this section, the subsequent theorems are reformulated in terms of the radii of starlikeness, convexity, and 

close-to-convexity. 

Theorem 4.1. If the function 𝑓(𝑧), defined by (1.2), belongs to the class 𝑃(𝑝, 𝛾, 𝜆), then it is multivalent starlike 

of order 𝜕(0 ≤ 𝜕 < 𝑝) in the open disk |𝑧| ≤ 𝑠1, such that  

𝑠1(𝑝, 𝛾, 𝜆, 𝜕) = 𝑖𝑛𝑓𝑗 [ ∑
(𝑝 − 𝜕)[𝑝 − 𝑗 − 𝛾 + 𝜆(𝑗 + 1)]𝑗(𝑗 − 1)

(𝑗 − 𝜕)[𝜆(1 + 𝑝) − 𝛾]𝑝(𝑝 − 1)
[
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚∞

𝑗=𝑝+1

𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
]

1

𝑗−𝑝

,   (𝑗 ≥ 𝑝 + 1). 

The result is sharp for the extremal function 𝑓(𝑧) given by (1.9). 

Proof. It is sufficient to show that 

|
𝑧𝑓′(𝑧)

𝑓(𝑧)
− 𝑝| ≤ 𝑝 − 𝜕,     (0 ≤ 𝜕 < 𝑝), 

for |𝑧| < 𝑠1(𝑝, 𝛾, 𝜆, 𝜕).  We have 

|
𝑧𝑓′(𝑧)

𝑓(𝑧)
− 𝑝| = |

𝑧[𝑝𝑧𝑝−1 + ∑ 𝑗𝑎𝑗𝑧𝑗−1∞
𝑗=𝑝+1 ] − 𝑝[𝑧𝑝 + ∑ 𝑎𝑗𝑧𝑗∞

𝑗=𝑝+1 ]

𝑧𝑝 + ∑ 𝑎𝑗𝑧𝑗∞
𝑗=𝑝+1

| 

= |
[∑ 𝑗𝑎𝑗𝑧𝑗∞

𝑗=𝑝+1 ] − 𝑝[∑ 𝑎𝑗𝑧𝑗∞
𝑗=𝑝+1 ]

𝑧𝑝 + ∑ 𝑎𝑗𝑧𝑗∞
𝑗=𝑝+1

| ≤
[∑ (𝑗 − 𝑝)|𝑎𝑗||𝑧|𝑗−𝑝∞

𝑗=𝑝+1 ]

[1 − ∑ |𝑎𝑗||𝑧|𝑗−𝑝∞
𝑗=𝑝+1 ]

. 

Thus,      

|
𝑧𝑓′(𝑧)

𝑓(𝑧)
− 𝑝| ≤ 𝑝 − 𝜕, 

if   

∑
(𝑗 − 𝜕)𝑎𝑗|𝑧|𝑗−𝑝

(𝑝 − 𝜕)
≤ 1.

∞

𝑗=𝑝+1

 

Therefore, by Corollary 2.2, the above inequality holds if 

(𝑗 − 𝜕)|𝑧|𝑗−𝑝

(𝑝 − 𝜕)
≤

[𝑝 − 𝑗 − 𝛾 + 𝜆(𝑗 + 1)]𝑗(𝑗 − 1)

[𝜆(1 + 𝑝) − 𝛾]𝑝(𝑝 − 1)
[
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚 𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
. 

Equivalently, if 

|𝑧| ≤ [
(𝑝 − 𝜕)[𝑝 − 𝑗 − 𝛾 + 𝜆(𝑗 + 1)]𝑗(𝑗 − 1)

(𝑗 − 𝜕)[𝜆(1 + 𝑝) − 𝛾]𝑝(𝑝 − 1)
[
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚
𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
]

1

𝑗−𝑝

 .    (1.11)    

Hence, the theorem follows easily from (1.11). ◻ 

Theorem 4.2. If the function 𝑓(𝑧), defined by (1.2), belongs to the class 𝑃(𝑝, 𝛾, 𝜆), then 𝑓(𝑧) is multivalent 

convex of order 𝜕 (0 ≤ 𝜕 < 𝑝) in the open disk |𝑧| < 𝑠2, where 

𝑠2(𝑝, 𝛾, 𝜆, 𝜕) = 𝑖𝑛𝑓𝑗 [
(𝑝 − 𝜕)[𝑝 − 𝑗 − 𝛾 + 𝜆(𝑗 + 1)](𝑗 − 1)

(𝑗 − 𝜕)[𝜆(1 + 𝑝) − 𝛾]𝑝(𝑝 − 1)
[
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚
𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠 , 𝑏𝑟)

(𝑗 − 𝑝)!
]

1

𝑗−𝑝

,    (𝑗 ≥ 𝑝 + 1). 
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The result is sharp for the extremal function 𝑓(𝑧) given by (1.9). 

Proof. It is sufficient to show that 

|1 +
𝑧𝑓′′(𝑧)

𝑓′(𝑧)
− 𝑝| ≤ 𝑝 − 𝜕,     (0 ≤ 𝜕 < 𝑝), 

for |𝑧| < 𝑠2(𝑝, 𝛾, 𝜆, 𝜕). We have 

|1 +
𝑧𝑓′′(𝑧)

𝑓′(𝑧)
− 𝑝| = |1 +

𝑧[𝑝(𝑝 − 1)𝑧𝑝−2 + ∑ 𝑗(𝑗 − 1)𝑎𝑗𝑧𝑗−2∞
𝑗=𝑝+1 ] − 𝑝[𝑝𝑧𝑝−1 + ∑ 𝑗𝑎𝑗𝑧𝑗−1∞

𝑗=𝑝+1 ]

[𝑝𝑧𝑝−1 + ∑ 𝑗𝑎𝑗𝑧𝑗−1∞
𝑗=𝑝+1 ]

| 

= |
[∑ 𝑗2𝑎𝑗𝑧𝑗−1∞

𝑗=𝑝+1 ] − [𝑝𝑗 ∑ 𝑎𝑗𝑧𝑗−1∞
𝑗=𝑝+1 ]

[𝑝𝑧𝑝−1 + ∑ 𝑗𝑎𝑗𝑧𝑗−1∞
𝑗=𝑝+1 ]

|. 

Then  

|1 +
𝑧𝑓′′(𝑧)

𝑓′(𝑧)
− 𝑝| ≤

[∑ 𝑗(𝑗 − 𝑝)𝑎𝑗|𝑧|𝑗−𝑝∞
𝑗=𝑝+1 ]

[1 − ∑ 𝑗𝑎𝑗|𝑧|𝑗−𝑝∞
𝑗=𝑝+1 ]

 . 

Thus, 

|1 +
𝑧𝑓′′(𝑧)

𝑓′(𝑧)
− 𝑝| ≤ 𝑝 − 𝜕, 

if  

∑
𝑗(𝑗 − 𝜕)𝑎𝑗|𝑧|𝑗−𝑝

(𝑝 − 𝜕)
≤ 1.

∞

𝑗=𝑝+1

 

Therefore, by Corollary 1.9, the above inequality holds if 

𝑗(𝑗 − 𝜕)|𝑧|𝑗−𝑝

(𝑝 − 𝜕)
≤

[𝑝 − 𝑗 − 𝛾 + 𝜆(𝑗 + 1)]𝑗(𝑗 − 1)

[𝜆(1 + 𝑝) − 𝛾]𝑝(𝑝 − 1)
[
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚 𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
. 

Equivalently, if 

|𝑧| ≤ [
(𝑝 − 𝜕)[𝑝 − 𝑗 − 𝛾 + 𝜆(𝑗 + 1)](𝑗 − 1)

(𝑗 − 𝜕)[𝜆(1 + 𝑝) − 𝛾]𝑝(𝑝 − 1)
[
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚
𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
]

1

𝑗−𝑝

.               (1.12) 

Hence, the theorem follows easily from (1.12). ◻ 

Theorem 4.3. Let the function 𝑓(𝑧) defined by (1.2) be in the class 𝑃(𝑝, 𝛾, 𝜆). Then 𝑓(𝑧) is multivalent close-

to-convex of order 𝜕 (0 ≤ 𝜕 < 𝑝) in the open disk |𝑧| < 𝑠3, where 

𝑠3(𝑝, 𝛾, 𝜆, 𝜕) = 𝑖𝑛𝑓𝑗 [
(𝑝 − 𝜕)[𝑝 − 𝑗 − 𝛾 + 𝜆(𝑗 + 1)](𝑗 − 1)

[𝜆(1 + 𝑝) − 𝛾]𝑝(𝑝 − 1)
[
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚
𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠 , 𝑏𝑟)

(𝑗 − 𝑝)!
]

1

𝑗−𝑝

,    (𝑗 ≥ 𝑝 + 1). 

The result is sharp for the external function 𝑓(𝑧) given by (1.9). 

Proof. It is sufficient to show that   

|
𝑓′(𝑧)

𝑧𝑝−1
− 𝑝| ≤ 𝑝 − 𝜕,    (0 ≤ 𝜕 < 𝑝), 



An Analysis of Certain Properties of a Subclass of p-Valent Functions … 

Earthline J. Math. Sci. Vol. 16 No. 2 (2026), 247-260 

255 

for |𝑧| < 𝑠3(𝑝, 𝛾, 𝜆, 𝜕). We have 

|
𝑓′(𝑧)

𝑧𝑝−1
− 𝑝| = |

𝑝𝑧𝑝−1 + ∑ 𝑗𝑎𝑗𝑧𝑗−1 − 𝑝𝑧𝑝−1∞
𝑗=𝑝+1

𝑧𝑝−1
| = | ∑ 𝑗𝑎𝑗𝑧𝑗−𝑝

∞

𝑗=𝑝+1

| ≤ ∑ 𝑗𝑎𝑗|𝑧|𝑗−𝑝

∞

𝑗=𝑝+1

. 

Thus 

|
𝑓′(𝑧)

𝑧𝑝−1
− 𝑝| ≤ 𝑝 − 𝜕 

if 

∑
𝑗𝑎𝑗|𝑧|𝑗−𝑝

(𝑝 − 𝜕)
≤ 1.

∞

𝑗=𝑝+1

 

Therefore, by Corollary 2.2, the above inequality holds if 

𝑗|𝑧|𝑗−𝑝

(𝑝 − 𝜕)
≤

[𝑝 − 𝑗 − 𝛾 + 𝜆(𝑗 + 1)]𝑗(𝑗 − 1)

[𝜆(1 + 𝑝) − 𝛾]𝑝(𝑝 − 1)
[
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚 𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
. 

Equivalently, if 

|𝑧| ≤ [
(𝑝 − 𝜕)[𝑝 − 𝑗 − 𝛾 + 𝜆(𝑗 + 1)](𝑗 − 1)

[𝜆(1 + 𝑝) − 𝛾]𝑝(𝑝 − 1)
[
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚
𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
]

 

1

𝑗−𝑝

.            (1.13) 

Hence, the theorem follows easily from (1.13). ◻ 

5. Extreme Points 

The theorem below addresses the extreme points of the class 𝑃(𝑝, 𝛾, 𝜆). 

Theorem 5.1. Let 𝑓𝑝(𝑧) = 𝑧𝑝 and 

𝑓𝑗(𝑧) = 𝑧𝑝 + ∑
[𝑝 − 𝑗 − 𝛾 + 𝜆(𝑗 + 1)]𝑗(𝑗 − 1)

[𝜆(1 + 𝑝) − 𝛾]𝑝(𝑝 − 1)
[
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚∞

𝑗=𝑝+1

𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
𝑧𝑗 

𝑤ℎ𝑒𝑟𝑒 (𝑗 ≥ 𝑝 + 1, 𝑝 ≥ 1,
1

2
≤ 𝛾 < 1, 0 < 𝜆 ≤

1

2
). 

Then the function 𝑓(𝑧) belongs to the class 𝑃(𝑝, 𝛾, 𝜆) if and only if it can be written as: 

𝑓(𝑧) = ℒ𝑝𝑧𝑝 + ∑ ℒ𝑗𝑓𝑗(𝑧),

∞

𝑗=𝑝+1

                                                                   (1.14) 

such that 

(ℒ𝑝 ≥ 0, ℒ𝑗 ≥ 0, 𝑗 ≥ 𝑝 + 1)  𝑎𝑛𝑑  ℒ𝑝 + ∑ ℒ𝑗 = 1.

∞

𝑗=𝑝+1

 

Proof. Suppose that 𝑓(𝑧) thus defined in (1.14), then 
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𝑓(𝑧) = ℒ𝑝𝑧𝑝 + ∑ ℒ𝑗 [𝑧𝑝 +
[𝜆(1 + 𝑝) − 𝛾]𝑝(𝑝 − 1)

[𝑝 − 𝑗 − 𝛾 + 𝜆(𝑗 + 1)]𝑗(𝑗 − 1)
[

𝑝

𝑝 + (𝑗 − 𝑝)𝜆
]

𝑚 (𝑗 − 𝑝)!

𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)
𝑧𝑗]

∞

𝑗=𝑝+1

 

= 𝑧𝑝 + ∑ [
[𝜆(1 + 𝑝) − 𝛾]𝑝(𝑝 − 1)

[𝑝 − 𝑗 − 𝛾 + 𝜆(𝑗 + 1)]𝑗(𝑗 − 1)
[

𝑝

𝑝 + (𝑗 − 𝑝)𝜆
]

𝑚 (𝑗 − 𝑝)!

𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)
] ℒ𝑗𝑧𝑗

∞

𝑗=𝑝+1

. 

Hence 

∑ [
[𝜆(1 + 𝑝) − 𝛾]𝑝(𝑝 − 1)

[𝑝 − 𝑗 − 𝛾 + 𝜆(𝑗 + 1)]𝑗(𝑗 − 1)
[

𝑝

𝑝 + (𝑗 − 𝑝)𝜆
]

𝑚 (𝑗 − 𝑝)!

𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)
]

∞

𝑗=𝑝+1

 

× [
[𝑝 − 𝑗 − 𝛾 + 𝜆(𝑗 + 1)]𝑗(𝑗 − 1)

[𝜆(1 + 𝑝) − 𝛾]𝑝(𝑝 − 1)
[
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚 𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
] ℒ𝑗 

= ∑ ℒ𝑗 = 1 − ℒ𝑝 ≤ 1

∞

𝑗=𝑝+1

. 

Thus 𝑓 ∈ 𝑃(𝑝, 𝛾, 𝜆). 

Conversely, suppose that 𝑓(𝑧) ∈ 𝑃(𝑝, 𝛾, 𝜆) we may be setting  

ℒ𝑗 = ∑ [
[𝑝 − 𝑗 − 𝛾 + 𝜆(𝑗 + 1)]𝑗(𝑗 − 1)

[𝜆(1 + 𝑝) − 𝛾]𝑝(𝑝 − 1)
[
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚 𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
]

∞

𝑗=𝑝+1

𝑎𝑗, 

where 𝑎𝑗 is defined in (1.10). Then 

𝑓(𝑧) = 𝑧𝑝 + ∑ 𝑎𝑗𝑧𝑗

∞

𝑗=𝑝+1

= 𝑧𝑝 + ∑ [
[𝜆(1 + 𝑝) − 𝛾]𝑝(𝑝 − 1)

[𝑝 − 𝑗 − 𝛾 + 𝜆(𝑗 + 1)]𝑗(𝑗 − 1)
[

𝑝

𝑝 + (𝑗 − 𝑝)𝜆
]

𝑚 (𝑗 − 𝑝)!

𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)
] ℒ𝑗𝑧𝑗

∞

𝑗=𝑝+1

 

= 𝑧𝑝 + ∑ [𝑓𝑗(𝑧) − 𝑧𝑝]

∞

𝑗=𝑝+1

 = ∑ ℒ𝑗𝑓𝑗(𝑧) + (1 − ∑ ℒ𝑗)𝑧𝑝

∞

𝑗=𝑝+1

∞

𝑗=𝑝+1

 . 

Thus 

𝑓(𝑧) = ℒ𝑝𝑧𝑝 + ∑ ℒ𝑗𝑓𝑗(𝑧)

∞

𝑗=𝑝+1

. 

This completes the proof of Theorem 2.1. ◻ 

6. Convolution Properties 

In this section, we present the following theorems, which explain the convolution properties of functions 

belonging to the class 𝑃(𝑝, 𝛾, 𝜆). 

Theorem 6.1. Let the functions 𝑓𝑠(𝑧) belong to the class 𝑃(𝑝, 𝛾, 𝜆) such that  

𝑓𝑠(𝑧) = 𝑧𝑝 + ∑ 𝑎𝑗,𝑠𝑧𝑗

∞

𝑗=𝑝+1

, (𝑎𝑗,𝑠 ≥ 0, 𝑠 = 1,2).                                        (1.15) 

Then (𝑓1 ∗ 𝑓2) ∈ 𝑃(𝑝, 𝛾, 𝑘), where 
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𝑘 ≥

𝑝(𝑝 − 1)[𝑝 − 𝑗 − 𝛾][(1 + 𝜆𝑝) − 𝛾]2𝑝𝑚(𝑗 − 𝑝)!

+𝑗(𝑗 − 1)𝛾[𝑝 − 𝑗 − 𝛾 + (𝜆𝑗 + 1)]2[𝑝 + (𝑗 − 𝑝)𝜆]𝑚𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(1 + 𝑝)𝑗(𝑗 − 1)[𝑝 − 𝑗 − 𝛾 + (𝜆𝑗 + 1)]2[𝑝 + (𝑗 − 𝑝)𝜆]𝑚𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

−(𝑗 + 1)𝑝(𝑝 − 1)[(1 + 𝜆𝑝) − 𝛾]2𝑝𝑚(𝑗 − 𝑝)!

 . 

The result is sharp for the functions 𝑓𝑠 (𝑠 = 1,2) given by (1.9), where  𝑘 ∈ ℂ/{0}. 

Proof. We will find the smallest 𝑘 such that 

∑ [
[𝑝 − 𝑗 − 𝛾 + 𝑘(𝑗 + 1)]𝑗(𝑗 − 1)

[𝑘(1 + 𝑝) − 𝛾]𝑝(𝑝 − 1)
[
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚 𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
] 𝑎𝑗,1𝑎𝑗,2 ≤ 1

∞

𝑗=𝑝+1

. 

Since 𝑓𝑠 ∈ 𝐵(𝑝, 𝛾, 𝜆), (𝑠 = 1,2), 

∑ [
[𝑝 − 𝑗 − 𝛾 + (𝜆𝑗 + 1)]𝑗(𝑗 − 1)

[(1 + 𝜆𝑝) − 𝛾]𝑝(𝑝 − 1)
[
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚 𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
]

∞

𝑗=𝑝+1

𝑎𝑗,𝑠 ≤ 1,   (𝑠 = 1,2). 

By Cauchy-Schwarz inequality, we get  

∑ [
[𝑝 − 𝑗 − 𝛾 + (𝜆𝑗 + 1)]𝑗(𝑗 − 1)

[(1 + 𝜆𝑝) − 𝛾]𝑝(𝑝 − 1)
[
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚 𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
]

∞

𝑗=𝑝+1

√𝑎𝑗,1𝑎𝑗,2 ≤ 1.       (1.16)  

Now, the only thing we need to prove is that: 

[
[𝑝 − 𝑗 − 𝛾 + 𝑘(𝑗 + 1)]𝑗(𝑗 − 1)

[𝑘(1 + 𝑝) − 𝛾]𝑝(𝑝 − 1)
[
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚 𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
] 𝑎𝑗,1𝑎𝑗,2

≤ [
[𝑝 − 𝑗 − 𝛾 + (𝜆𝑗 + 1)]𝑗(𝑗 − 1)

[(1 + 𝜆𝑝) − 𝛾]𝑝(𝑝 − 1)
[
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚
𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
] √𝑎𝑗,1𝑎𝑗,2 

and equivalently to: 

√𝑎𝑗,1𝑎𝑗,2 ≤
[𝑘(1 + 𝑝) − 𝛾][𝑝 − 𝑗 − 𝛾 + (𝜆𝑗 + 1)]

[𝑝 − 𝑗 − 𝛾 + 𝑘(𝑗 + 1)][(1 + 𝜆𝑝) − 𝛾]
, 

from (1.16), we have  

√𝑎𝑗,1𝑎𝑗,2 ≤
1

[𝑝−𝑗−𝛾+(𝜆𝑗+1)]𝑗(𝑗−1)

[(1+𝜆𝑝)−𝛾]𝑝(𝑝−1)
[

𝑝+(𝑗−𝑝)𝜆

𝑝
]

𝑚 𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠,𝑏𝑟)

(𝑗−𝑝)!

 , 

this ends well enough to illustrate that 

[(1 + 𝜆𝑝) − 𝛾]𝑝(𝑝 − 1)𝑝𝑚(𝑗 − 𝑝)!

[𝑝 − 𝑗 − 𝛾 + (𝜆𝑗 + 1)]𝑗(𝑗 − 1)[𝑝 + (𝑗 − 𝑝)𝜆]𝑚𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)
≤

[𝑘(1 + 𝑝) − 𝛾][𝑝 − 𝑗 − 𝛾 + (𝜆𝑗 + 1)]

[𝑝 − 𝑗 − 𝛾 + 𝑘(𝑗 + 1)][(1 + 𝜆𝑝) − 𝛾]
 , 

then 

[𝑝 − 𝑗 − 𝛾][(1 + 𝜆𝑝) − 𝛾]2𝑝(𝑝 − 1)𝑝𝑚(𝑗 − 𝑝)!+𝑘(𝑗 + 1)[(1 + 𝜆𝑝) − 𝛾]2𝑝(𝑝 − 1)𝑝𝑚(𝑗 − 𝑝)! 

≤ (−𝛾)[𝑝 − 𝑗 − 𝛾 + (𝜆𝑗 + 1)]2𝑗(𝑗 − 1)[𝑝 + (𝑗 − 𝑝)𝜆]𝑚𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

+ 𝑘(1 + 𝑝)[𝑝 − 𝑗 − 𝛾 + (𝜆𝑗 + 1)]2𝑗(𝑗 − 1)[𝑝 + (𝑗 − 𝑝)𝜆]𝑚𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟), 
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 𝑘 ≥

𝑝(𝑝 − 1)[𝑝 − 𝑗 − 𝛾][(1 + 𝜆𝑝) − 𝛾]2𝑝𝑚(𝑗 − 𝑝)!

+𝑗(𝑗 − 1)𝛾[𝑝 − 𝑗 − 𝛾 + (𝜆𝑗 + 1)]2[𝑝 + (𝑗 − 𝑝)𝜆]𝑚𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(1 + 𝑝)𝑗(𝑗 − 1)[𝑝 − 𝑗 − 𝛾 + (𝜆𝑗 + 1)]2[𝑝 + (𝑗 − 𝑝)𝜆]𝑚𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

−(𝑗 + 1)𝑝(𝑝 − 1)[(1 + 𝜆𝑝) − 𝛾]2𝑝𝑚(𝑗 − 𝑝)!

 . 

Thus, the theorem is established. ◻ 

Theorem 6.2. Let the functions 𝑓𝑠(𝑧) defined by (1.15) in Theorem 6.1 belong to the class 𝑃(𝑝, 𝛾, 𝜆). Then the 

function 𝑓(𝑧) = 𝑧𝑝 + ∑ (𝑎𝑗,1
2 + 𝑎𝑗,2

2 )𝑧𝑗∞
𝑗=𝑝+1  also belongs to the class 𝑃(𝑝, 𝛾, 𝜆), where 𝑝(𝑝 + 1)[1 −

(𝜆(𝑝 + 1) + 1) + 𝛾] − 2𝑝(𝑝 − 1)[(𝜆𝑝 + 1) − 𝛾] ≥ 0. 

Proof. Since 𝑓1(𝑧) ∈ 𝐵(𝑝, 𝛾, 𝜆), we get  

∑ [
[𝑝 − 𝑗 − 𝛾 + (𝜆𝑗 + 1)]𝑗(𝑗 − 1)

[(1 + 𝜆𝑝) − 𝛾]𝑝(𝑝 − 1)
[
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚 𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
]

2∞

𝑗=𝑝+1

𝑎𝑗,1
2  , 

where (𝑗 ≥ 𝑝 + 1, 𝑝 ≥ 1,
1

2
≤ 𝛾 < 1, 0 < 𝜆 ≤

1

2
). 

∑ [
[𝑝 − 𝑗 − 𝛾 + (𝜆𝑗 + 1)]𝑗(𝑗 − 1)

[(1 + 𝜆𝑝) − 𝛾]𝑝(𝑝 − 1)
[
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚 𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
]

2∞

𝑗=𝑝+1

𝑎𝑗,1
2  

≤ ( ∑ [
[𝑝 − 𝑗 − 𝛾 + (𝜆𝑗 + 1)]𝑗(𝑗 − 1)

[(1 + 𝜆𝑝) − 𝛾]𝑝(𝑝 − 1)
[
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚
𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
]

∞

𝑗=𝑝+1

𝑎𝑗,1)

2

≤ 1    (1.17) 

and 

∑ [
[𝑝 − 𝑗 − 𝛾 + (𝜆𝑗 + 1)]𝑗(𝑗 − 1)

[(1 + 𝜆𝑝) − 𝛾]𝑝(𝑝 − 1)
[
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚 𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
]

2∞

𝑗=𝑝+1

𝑎𝑗,2
2  

≤ ( ∑ [
[𝑝 − 𝑗 − 𝛾 + (𝜆𝑗 + 1)]𝑗(𝑗 − 1)

[(1 + 𝜆𝑝) − 𝛾]𝑝(𝑝 − 1)
[
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚
𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
]

∞

𝑗=𝑝+1

𝑎𝑗,2)

2

≤ 1,    (1.18) 

combining the inequalities (1.17) and (1.18) gives  

∑
1

2
[
[𝑝 − 𝑗 − 𝛾 + (𝜆𝑗 + 1)]𝑗(𝑗 − 1)

[(1 + 𝜆𝑝) − 𝛾]𝑝(𝑝 − 1)
[
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚 𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
]

∞

𝑗=𝑝+1

2

(𝑎𝑗,1
2 + 𝑎𝑗,2

2 ) ≤ 1. 

According to Theorem 2.1, it is sufficient to show that 

∑ [
[𝑝 − 𝑗 − 𝛾 + (𝜆𝑗 + 1)]𝑗(𝑗 − 1)

[(1 + 𝜆𝑝) − 𝛾]𝑝(𝑝 − 1)
[
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚 𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
]

∞

𝑗=𝑝+1

(𝑎𝑗,1
2 + 𝑎𝑗,2

2 ) ≤ 1. 

Thus, if the last inequality is fulfilled, for ( 𝑗 = 𝑝 + 1, 𝑝 + 2, 𝑝 + 3, … ) 
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[
[𝑝 − 𝑗 − 𝛾 + (𝜆𝑗 + 1)]𝑗(𝑗 − 1)

[(1 + 𝜆𝑝) − 𝛾]𝑝(𝑝 − 1)
[
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚 𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
]

≤
1

2
[
[𝑝 − 𝑗 − 𝛾 + (𝜆𝑗 + 1)]𝑗(𝑗 − 1)

[(1 + 𝜆𝑝) − 𝛾]𝑝(𝑝 − 1)
[
𝑝 + (𝑗 − 𝑝)𝜆

𝑝
]

𝑚 𝛶(𝑗−𝑝,𝜐,𝑒)(𝑎𝑠, 𝑏𝑟)

(𝑗 − 𝑝)!
]

2

. 

Or, if 

[(1 + 𝜆𝑝) − 𝛾]𝑝(𝑝 − 1) − 2𝑗(𝑗 − 1)[𝑝 − 𝑗 − 𝛾 + (𝜆𝑗 + 1)] ≥ 0                                 (1.19) 

for 𝑗 = 𝑝 + 1, 𝑝 + 2, 𝑝 + 3, …,  the left-hand side of (1.19) is increasing function of 𝑗, hence it is satisfied for    

all 𝑗, 

𝑝(𝑝 + 1)[𝜆(𝑝 + 1) − 𝛾] − 2[(1 + 𝜆𝑝) − 𝛾]𝑝(𝑝 − 1) ≥ 0, 

which is true by our assumption therefore the proof is complete. ◻ 

7. Conclusion 

The main aim was to employ the integration of a generalized derivative operator to construct the subclass 

𝑃(𝑝, 𝛾, 𝜆) of multivalent functions in the open unit disk. For functions in this subclass, we established various 

properties such as, coefficient inequalities, growth and distortion estimates, extreme points, radii of close-to-

convexity, starlikeness and convexity. 
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