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Abstract

This article presents the study of certain subclasses of analytic functions

defined by using the Hadamard product. We derive certain inclusion results

and discuss the applications of multiplier transformation. Several radius

problems are also investigated.

1 Introduction

Let A denote the class of normalized analytic functions in E = {z ∈ C : |z| < 1},
of the series representation

f(z) = z +
∞∑
n=2

anz
n. (1.1)

The class S ⊂ A, represents the class of univalent functions in E. We denote S∗

and C be the classes of starlike and convex univalent functions in E, respectively.

Let f and g be the analytic functions in E, we say f is subordinate to g (written
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as f ≺ g) if and only if there exists a Schwartz function w(z) (that is, w(0) = 0

and |w(z)| < 1) in E such that

f(z) = g (w (z)) .

Particularly, if g(z) is univalent function in E, then f ≺ g is equivalent to

f(0) = g(0) and f(E) ⊂ g(E).

The convolution of two power series f and g in E denoted by ∗, and is defined

as follows,

(f ∗ g)(z) = z +

∞∑
n=2

anz
n (z ∈ E).

We consider H be the class of analytic univalent functions h(z) in E with

h(0) = 1 and Re {h(z)} > 0, (z ∈ E).

Now, we define the following.

Definition 1. Let f, g ∈ A with (f ∗ g)(z) 6= 0 (z ∈ E). Then f ∈ S∗g (h) if and

only if

z (g ∗ f)
′
(z)

(g ∗ f)(z)
≺ h(z), z ∈ E.

Analogously,

Cg(h) =
{
f ∈ A : zf ′ ∈ S∗g (h)

}
.

Obviously, for the particular choices of functions g and h, we have specific

subclasses of S.

1. Let h (z) = pk (z), k ∈ [0, 1] , where pk (z) is convex univalent in E and has

the form

pk (z) =


1+z
1−z , k = 0,

1 + 2
π2

(
log 1+

√
z

1−
√
z

)2
, k = 1,

1 + 2
1−k2

[(
2
π arccos k

)
arctanh

√
z
]
, 0 < k < 1.

(1.2)
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We denote

k − ST g =

{
f ∈ A :

z (g ∗ f)
′
(z)

(g ∗ f)(z)
≺ pk(z), g ∈ A, z ∈ E

}
,

k − UCVg =

f ∈ A :

(
z (g ∗ f)

′
(z)
)′

(g ∗ f)′(z)
≺ pk(z), g ∈ A, z ∈ E

 .

Note that if g(z) = z
1−z , z ∈ E, we obtain the well-known classes k−UCV and

k−ST of k-uniformly convex and corresponding starlike functions respectively,

introduced and studied by Kanas et al. [3, 4]. Also, we refer to [5, 6].

2. Let h(z) =
(
1+az
1+bz

)β
, −1 ≤ b < a ≤ 1, 0 < β ≤ 1, be convex univalent in E

and the series representation of h (z) be as follows:

p (z) = 1 + β (a− b) z +

[
−β (a− b) b +

1

2
β (β − 1) (a− b)2

]
z2 + ....

We denote

S∗g (a, b;β) =

{
f ∈ A :

z (g ∗ f)
′
(z)

(g ∗ f)(z)
≺
(

1 + az

1 + bz

)β
, g ∈ A, z ∈ E

}
,

Cg (a, b;β) =

f ∈ A :

(
z (g ∗ f)

′
(z)
)′

(g ∗ f)′(z)
≺
(

1 + az

1 + bz

)β
, g ∈ A, z ∈ E

 .

It is noted that, if g (z) = z
1−z , z ∈ E, we have S∗ (a, b;β) and C (a, b;β),

respectively. Moreover, if β = 1, then it reduces to the well-known classes S∗ [a, b]

and C [a, b] , respectively, we refer to [2, 10, 12]. Furthermore, if a = 1 − 2α and

b = −1, we get S∗ (α) and C (α), ( see [13]), respectively. For α = 0, we have S∗

and C.

The multiplier transformation Iλ,s : A −→ A is defined as follows [1]:

Iλ,sf(z) = z +

∞∑
n=2

(
n+ λ

1 + λ

)s
anz

n (λ > −1, s ∈ R). (1.3)

Earthline J. Math. Sci. Vol. 5 No. 1 (2021), 75-86



78 Khalida Inayat Noor, Muhammad Kamran and Shujaat Ali Shah

Clearly, Iλ,s (Iλ,tf (z)) = Iλ,s+tf (z), for (s, t ∈ R). For different values of s

and λ, the operator Iλ,s has been studied by several authors [7, 8, 11, 15].

From equation (1.3), we can easily have the following identity,

z (Iλ,sf (z))
′

= (λ+ 1) Iλ,s+1f (z)− λIλ,sf (z) . (1.4)

We now define the following by taking the value of g = Iλ,s in the Definition

1.

S∗λ,s(h) =

{
f ∈ A :

z (Iλ,sf(z))′

Iλ,sf(z)
≺ h (z) , z ∈ E

}
,

Cλ,s(h) =

f ∈ A :

(
z (Iλ,sf)

′
(z)
)′

(Iλ,sf(z))′
≺ h (z) , z ∈ E

 .

Particularly, for h (z) = pk (z) given by (1.2), we have

k−ST g =

{
f ∈ A :

z (Iλ,sf(z))′

Iλ,sf(z)
≺ pk(z), g ∈ A, z ∈ E

}
,

k−UCVg =

f ∈ A :

(
z (Iλ,sf)

′
(z)
)′

(Iλ,sf(z))′
≺ pk(z), g ∈ A, z ∈ E

 .

And, for h (z) =
(
1+az
1+bz

)β
,−1 ≤ b < a ≤ 1, 0 < β ≤ 1, we define

S∗λ,s (a, b;β) =

{
f ∈ A :

z (Iλ,sf(z))′

(Iλ,sf(z))
≺
(

1 + az

1 + bz

)β
, z ∈ E

}
,

Cλ,s (a, b;β) =

{
f ∈ A :

(
z (Iλ,sf(z))′

)′
(Iλ,sf(z))′

≺
(

1 + az

1 + bz

)β
, z ∈ E

}
.
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2 Basic Results

Lemma 1. [9] Let h(z) be analytic univalent in E with h(0) = 1 and

Re {βh (z) + γ} > 0, (β, γ ∈ C) .

If p(z) is analytic in E with p (0) = 1, then

p(z) +
zp′(z)

βh (z) + γ
≺ h(z) , z ∈ E,

implies that p(z) ≺ h(z) , z ∈ E.

Lemma 2. [14] If ϕ ∈ C, f ∈ S∗ and p is analytic in E with p (0) = 1, then

(ϕ ∗ pf) (z)

ϕ ∗ f
⊂ COp(E), (2.1)

where CO is the closed convex hull.

3 Main Results

We take k ∈ [0, 1] , − 1 ≤ b < a ≤ 1, β ∈ (0, 1], λ > −1 and s ∈ R throughout

the paper unless stated otherwise.

Theorem 1. Let f ∈ Cg(h). Then f ∈ S∗g (h), where h ∈ H and g ∈ A.

Proof. Let f ∈ Cg (h) and we set

z (g ∗ f)
′
(z)

(g ∗ f) (z)
= p (z) . (3.1)

We note that p(0) = 1.

Now, by logarithmic differentiation and simple computation, we have(
z (g ∗ f)

′
(z)
)

(g ∗ f)′ (z)
= p (z) +

zp′ (z)

p (z)
.

By using Lemma 1, we obtain,

p(z) ≺ h (z) , z ∈ E. (3.3)

Consequently, f ∈ S∗g (h), z ∈ E.
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When we take h (z) =
(
1+az
1+bz

)β
in Theorem 1, then we have

Corollary 1. Let g ∈ A. Then Cg (a, b;β) ⊂ S∗g (a, b;β).

Note that, for g(z) = z
1−z , z ∈ E, we get C (a, b;β) ⊂ S∗ (a, b;β). Moreover,

if a = 1−2α, b = −1, then this inclusion reduces to C (α) ⊂ S∗ (α). Furthermore,

when we take α = 0, we imply C ⊂ S∗.
Again, if we take h (z) = pk(z) given by (1.2) in Theorem 1, then we have

Corollary 2. Let g ∈ A. Then k − UCVg ⊂ k−ST g.

Theorem 2. Let f ∈ S∗g (h) and ϕ be convex univalent in E. Then for g ∈ A,
h ∈ H, ϕ ∗ f ∈ S∗g (h).

Proof. Consider

z (g ∗ (ϕ ∗ f))
′
(z)

(g ∗ (ϕ ∗ f)) (z)
=

(
g ∗ z (ϕ ∗ f)′

)
(z)

(ϕ ∗ (g ∗ f)) (z)

=
(ϕ ∗ g ∗ zf ′) (z)

(ϕ ∗ (g ∗ f)) (z)

=
(ϕ ∗ z(g ∗ f)′) (z)

(ϕ ∗ (g ∗ f)) (z)

=

(
ϕ ∗ z(g∗f)

′

(g∗f) (g ∗ f)
)

(z)

(ϕ ∗ (g ∗ f)) (z)

=
(ϕ ∗ p (g ∗ f)) (z)

(ϕ ∗ (g ∗ f)) (z)
.

Since f ∈ S∗g (h), we have g ∗ f ∈ S∗g (h) implies p (z) = z(g∗f)′
g∗f ≺ h (z). Therefore,

by using Lemma 2, we conclude

z
(
g ∗ (ϕ ∗ f)′

)
(z)(

g ∗ (ϕ ∗ f)′
)

(z)
≺ h (z) .

Consequently, (ϕ ∗ f) ∈ S∗g (h) , for z ∈ E.

When we choose h(z) =
(
1+az
1+bz

)β
, we get the following.
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Corollary 3. Let f ∈ S∗g (a, b;β) and ϕ be convex univalent in E. Then ϕ ∗ f ∈
S∗g (a, b;β) , for g ∈ A.

Remark 1. For g(z) = z
1−z , we can deduce that S∗ [a, b] , S∗ (α) , α ∈ [0, 1), and

S∗ are also closed under the convex convolution.

If we take h(z) = pk (z) given by (1.2) in Theorem 2, we get the following.

Corollary 4. Let f ∈ k−ST g and ϕ be convex univalent in E. Then, for g ∈ A,

ϕ ∗ f ∈ k − ST g.

Theorem 3. Let h ∈ H. Then S∗λ,s+1(h) ⊂ S∗λ,s(h).

Proof. Suppose f ∈ S∗λ,s+1(h).

We consider

z(Iλ,sf(z))
′

Iλ,sf(z)
= p(z), (3.4)

where p (0)− 1 = 0.

By applying (1.4) and (3.4), we have

(λ+ 1)
Iλ,s+1f(z)

Iλ,sf(z)
= p(z) + λ. (3.5)

On logarithmic differentiation of (3.5), we get

z (Iλ,s+1f(z))

Iλ,s+1f(z)
=

z(Iλ,sf(z))
′

Iλ,sf(z)
+

zp
′
(z)

p(z) + λ
,

= p (z) +
zp

′
(z)

p(z) + λ
.

Since h(z) ∈ H, and f ∈ S∗λ,s+1 for z ∈ E, we see that

Re {h(z) + λ} > 0, z ∈ E,
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and

p (z) +
zp

′
(z)

p(z) + λ
≺ h (z) , z ∈ E. (3.6)

Thus, by Lemma 1, we conclude p (z) ≺ h (z), z ∈ E.

For h(z) =
(
1+az
1+bz

)β
in Theorem 3, we have

Corollary 5. Let f ∈ S∗λ,s+1 (a, b;β). Then f ∈ S∗λ,s (a, b;β).

Note that for β = 1, we have S∗λ,s+1 [a, b] ⊂ S∗λ,s [a, b]. Moreover, for a =

1 − 2α, b = −1, we get S∗λ,s+1 (α) ⊂ S∗λ,s (α) , α ∈ [0, 1), and if α = 0, then

S∗λ,s+1 ⊂ S∗λ,s.
Now, for h(z) = pk(z) given by (1.2) in Theorem 3, we have

Corollary 6. Let f ∈ k − ST λ,s+1. Then f ∈ k − ST λ,s.

Theorem 4. Let h ∈ H. Then Cλ,s+1(h) ⊂ Cλ,s(h).

Proof. The proof is immediate. In fact

f ∈ Cλ,s+1(h)⇐⇒ zf
′ ∈ S∗λ,s+1(h) =⇒ zf

′ ∈ S∗λ,s(h)⇐⇒ f ∈ Cλ,s(h).

On similar arguments as used before we have some special cases as corollaries

by choosing h(z) =
(
1+az
1+bz

)β
and h(z) = pk(z) in Theorem 4.

Corollary 7. Let f ∈ Cλ,s+1 (a, b;β). Then f ∈ Cλ,s (a, b;β) .

Corollary 8. Let f ∈ k − UCVλ,s+1. Then f ∈ k − UCVλ,s.

3.1 Radius Problems

Theorem 5. Let f ∈ S∗g (a, b;β). Then f ∈ Cg (1,−1; 1) for |z| < ro, where ro is

the positive root in (0, 1) of the following equation

(1− ar)β+1 − β (a− b) (1− br)β−1 = 0. (3.7)
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Proof. Since f ∈ S∗g (a, b;β) implies that

z (g ∗ f)
′
(z)

(g ∗ f) (z)
= p (z) ≺

(
1 + az

1 + bz

)β
, for z ∈ E. (3.8)

By logarithmic differentiation and simple computation, we have(
z (g ∗ f)

′
(z)
)′

(g ∗ f)
′
(z)

= p (z) +
zp′ (z)

p (z)
. (3.9)

For p ∈ P (a, b;β) , we can easily write(
1− ar

1− br

)β
≤ Re {p (z)} ≤ |p (z)| ≤

(
1 + ar

1 + br

)β
, (3.10)

Re

{
zp′ (z)

p (z)

}
≤ β (a− b) r

(1− ar) (1− br)
. (3.11)

From equation (3.9)-(3.11), we get

Re

{(
z (g ∗ f)′ (z)

)′
(g ∗ f)′ (z)

}
≥

(
1− ar

1− br

)β
− β (a− b) r

(1− ar) (1− br)

=
(1− ar)β+1 − β(a− b)(1− br)β−1r

(1− ar)(1− br)β
. (3.12)

The right hand side is positive if and only if

(1− ar)β+1 − β(a− b)(1− br)β−1r

(1− ar)(1− br)β
≥ 0.

Taking T (r) = (1− ar)β+1−β (a− b) (1− br)β−1 . Here, T (0) > 0 and T (1) < 0,

there exists ro ∈ (0, 1) is least root of the equation given by (3.7) .

Remark 2. When we take g(z) = z
1−z , z ∈ E, a = 1, b = −1 and β = 1. Then,

we have well-known result S∗ ⊂ C for |z| < ro = 2−
√

3.

Theorem 6. Let f ∈ S∗λ,s (a, b;β) . Then f ∈ S∗λ,s+1 (1,−1; 1) for |z| < ro, where

ro is positive root in (0, 1) of the equation

λ (1− ar) (1− br)β + (1− ar)2 − β (a− b) (1− br)β−1 r = 0. (3.13)
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Proof. Suppose f ∈ S∗λ,s (a, b;β). Then, we write

z (Iλ,sf (z))′

Iλ,sf (z)
= p (z) ≺

(
1 + az

1 + bz

)β
. (3.14)

On making use of (1.4) and (3.14), we have

(λ+ 1)
Iλ,s+1f (z)

Iλ,sf (z)
= p (z) + λ. (3.15)

The logarithmic differentiation and simple calculation yield.

z (Iλ,s+1f (z))′

Iλ,s+1f (z)
= p (z) +

zp′ (z)

p (z) + λ
. (3.16)

From (3.10), (3.11) and (3.16), we obtain

Re
z (Iλ,s+1f (z))

′

Iλ,s+1f (z)
≥ (Rep (z))

(
λ (1− ar) (1− br)

β
+ (1− ar)

2 − β (a− b) (1− br)
β−1

r

λ (1− ar) (1− br)
β

+ (1− ar)
β+1

)
.

(3.17)

The right hand side is positive if and only if(
λ (1− ar) (1− br)β + (1− ar)2 − β (a− b) (1− ar)β−1 r

λ (1− ar) (1− br)β + (1− ar)β+1

)
≥ 0.

Taking T (r) = λ (1− ar) (1− br)β + (1− ar)β+1 − β (a− b) (1− br)β−1 r. Here

T (0) > 0 and T (1) < 0, then there exists ro ∈ (0, 1) is the least root of the

equation given by (3.13).

Theorem 7. Let f ∈ Cλ,s (a, b;β). Then f ∈ Cλ,s+1 (1,−1; 1) for |z| < ro, where

ro is least positive root of the equation (3.13).

Proof. Assume that
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f ∈ Cλ,s (a, b;β) , z ∈ E.

⇐⇒ Iλ,sf ∈ C (a, b;β)

⇐⇒ z (Iλ,sf)′ ∈ S∗ (a, b;β)

⇐⇒ Iλ,s
(
zf ′
)
∈ S∗ (a, b;β)

⇐⇒ zf ′ ∈ S∗λ,s (a, b;β)

=⇒ zf ′ ∈ S∗λ,s+1 (1,−1; 1) in |z| < ro

⇐⇒ Iλ,s+1

(
zf ′
)
∈ S∗ (1,−1; 1)

⇐⇒ z (Iλ,s+1f)′ ∈ S∗ (1,−1; 1)

⇐⇒ Iλ,s+1f ∈ C (1,−1; 1)

⇐⇒ f ∈ Cλ,s+1 (1,−1; 1) in |z| < ro.
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