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Abstract 

In this paper, by making use the second kind Chebyshev polynomials, we introduce and 

study a certain class of bi-starlike and bi-convex functions with respect to symmetrical 

points defined in the open unit disk. We find upper bounds for the second and third 

coefficients of functions belong to this class. 

1. Introduction  

The importance of Chebyshev polynomial in numerical analysis is increased in both 

theoretical and practical points of view. There are four kinds of Chebyshev polynomials. 

Several researchers dealing with orthogonal polynomials of Chebyshev family, contain 

mainly results of Chebyshev polynomials of first kind ( ),tTn  the second kind ( )tUn  and 

their numerous uses in different applications one can refer [5, 7, 9]. The Chebyshev 

polynomials of the first and second kinds are well known and they are defined by 

( ) θ= ntTn cos      and    ( ) ( ) ( ),11
sin

1sin <<−
θ

θ+= t
n

tUn  

where n indicates the polynomial degree and .cos θ= nt   
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Let A  stand for the family of functions f which are analytic in the open unit disk 

{ }1: <∈= zzU C  that have the form:  

 ( ) ∑
∞

=

+=
2

.

n

n
n zazzf  (1.1) 

Also, let S be the subclass of A  consisting of the form (1.1) which are univalent in 

U. It is well known (see [6]) that every function Sf ∈  has an inverse ,
1−

f  defined by 

( )( ) ( )Uzzzff ∈=−
,

1  and ( ( )) ( ( ) ( ) ),
4

1
,, 00

1 ≥<=−
frfrwwwff  where  

 ( ) ( ) ( ) ( ) ....552 4
432

3
2

3
3

2
2

2
2

1 ++−−−+−== −
waaaawaawawwfwg  (1.2) 

A function A∈f  is said to be bi-univalent in U if both f and 1−
f  are univalent in 

U. Let ∑  stand for the class of bi-univalent functions in U given by (1.1). For a brief 

history and interesting examples of functions that are in (or are not in) the class ,∑  

together with various other properties of the bi-univalent functions class ,∑  one can 

refer the work of Srivastava et al. [13] and the references stated therein. Recently, many 

authors introduced various subclasses of the bi-univalent functions class ∑  and 

investigated non sharp estimates on the first two coefficients 2a  and 3a  in the 

Taylor-Maclaurin series expansion (1.1) (see [1, 2, 3, 4, 8, 12]).  

Sakaguchi [11] introduced the class ∗
sS  of functions starlike with respect to 

symmetric points, which consists of functions Sf ∈  satisfying the condition 

( )
( ) ( )

.,0Re Uz
zfzf

zfz ∈>








−−
′

 

Also, Wang et al. [15] introduced the class sK  of functions convex with respect to 

symmetric points, which consists of functions Sf ∈  satisfying the condition    

( )( )
( ) ( )( )

.,0Re Uz
zfzf

zfz ∈>












′−−

′′
 

With a view to recalling the principal of subordination between analytic functions, 

let the functions f and g be analytic in U. We say that the function f is said to be 
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subordinate to g, if there exists a Schwarz function w analytic in U with ( ) 00 =w  and 

( ) ( )Uzzw ∈< 1  such that ( ) ( )( ).zwgzf =  This subordination is denoted by gf ≺  

or ( ) ( ) ( ).Uzzgzf ∈≺  It is well known that (see [10]), if the function g is univalent in 

U, then gf ≺  if and only if ( ) ( )00 gf =  and ( ) ( ).UgUf ⊂   

We consider the function   

( ) .,1,
2

1
,

21

1
,

2
Uzt

ztz
tzH ∈





∈
+−

=  

We note that if ,cos β=t  where ,
3

,
3








 ππ−∈β  then 

( ) ( )
,

sin

1sin
1

cos21

1
,

1
2 ∑

∞

= β
β++=

+β−
=

n

n
z

n

zz
tzH  .Uz ∈  

Therefore 

( ) ( ) .,sincos3cos21,
222

UzzztzH ∈+β−β+β+= ⋯  

In view of [16], we can write 

( ) ( ) ( ) ( )( ),1,1,1,
2

21 −∈∈+++= tUzztUztUtzH ⋯  

where  

( ) { }( )...,2,1
1

arccossin

2
1 =∈

−
=− Nn

t

tn
Un  

are the Chebyshev polynomials of the second kind. Also, it is known that 

( ) ( ) ( )tUttUtU nnn 212 −− −=  

and 

 ( ) ( ) ( ) ....,48,14,2
3

3
2

21 tttUttUttU −=−==  (1.3) 

The generating function of the first kind of Chebyshev polynomial ( ) [ ]1,1, −∈ttTn  

is given by  

( )∑
∞

=

∈
+−

−=
0

2
.,

21

1

n

n
n Uz

ztz

tz
ztT  
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The Chebyshev polynomials of first kind ( )tTn  and of the second kind ( )tUn  are 

connected by 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).2,, 211 tUtUtTttUtUtTtnU
dt

tdT
nnnnnnn

n
−−− −=−==  

2. Main Results  

Definition 2.1. For 0≥γ  and ,1,
2

1






∈t  a function ∑∈f  is said to be in the 

class ( )t
s ,γ∑D  if it satisfies the subordinations:  

( )
( ) ( )

( )( )
( ) ( )( )

( )
2

1

21

1
,

22

ztz
tzH

zfzf

zfz

zfzf

zfz

+−
=















′−−

′′









−−
′

γ−γ

≺  

and  

( )
( ) ( )

( )( )
( ) ( )( )

( ) ,
21

1
,

22
2

1

wtw
twH

wgwg

wgw

wgwg

wgw

+−
=















′−−

′′









−−
′

γ−γ

≺  

where the function 1−= fg  is given by (1.2).  

Theorem 2.1. For 0≥γ  and ,1,
2

1






∈t  let f be in the class ( )., t
s γ∑D  Then  

( ) ( ) ( )12212

2

222
2

−−γ−−γ
≤

tt

tt
a  

and  

( )
.

232
2

2

3 γ−
+

−γ
≤ tt

a  

Proof. Let ( )., tf
s γ∈ ∑D  Then there exists two analytic functions UUvu →:,  

given by  

 ( ) ( )Uzzuzuzuzu ∈+++= ⋯
3

3
2

21  (2.1)   
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and  

 ( ) ( ),3
3

2
21 Uwwvwvwvwv ∈+++= ⋯  (2.2)                                                                 

with ( ) ( ) ( ) ( ) Uwwvzuvu ∈<<== ,1,1,000  such that 

 
( )

( ) ( )
( )( )

( ) ( )( )
( ) ( ) ( ) ( ) ⋯+++=















′−−

′′









−−
′

γ−γ

zutUzutU
zfzf

zfz

zfzf

zfz 2
21

1

1
22

 (2.3)  

and  

 
( )

( ) ( )
( )( )

( ) ( )( )
( ) ( ) ( ) ( ) .1

22 2
21

1

⋯+++=














′−−

′′









−−
′

γ−γ

wvtUwvtU
wgwg

wgw

wgwg

wgw
 (2.4) 

Combining (2.1), (2.2), (2.3) and (2.4), we obtain  

 
( )

( ) ( )
( )( )

( ) ( )( )

γ−γ















′−−

′′









−−
′

1

22

zfzf

zfz

zfzf

zfz
 

 ( ) [ ( ) ( ) ] ⋯++++= 22
1221111 zutUutUzutU  (2.5)  

and  

( )
( ) ( )

( )( )
( ) ( )( )

γ−γ















′−−

′′









−−
′

1

22

wgwg

wgw

wgwg

wgw
 

 ( ) [ ( ) ( ) ] ⋯++++= 22
1221111 wvtUvtUwvtU   (2.6) 

It is well-known that if ( ) 1<zu  and ( ) ,,,1 Uwzwv ∈<  then 

 1≤iu  and 1≤iv  for all .N∈i   (2.7) 

Comparing the corresponding coefficients in (2.5) and (2.6), after simplifying, we have 

 ( ) ( ) ,22 112 utUa =−γ−  (2.8)  

 [( ) ( )] ( ) ( ) ( ) ,2324322
2
12213

2
2

2
utUutUaa +=γ−+−γ+−γ  (2.9) 

 ( ) ( ) 11222 vtUa =−γ  (2.10) 
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and 

 [( ) ( ) ( )] ( ) ( ) ( ) .322323522 2
12213

2
2

2
vtUvtUaa +=−γ+−γ+γ−+−γ  (2.11) 

It follows from (2.8) and (2.10) that 

 11 vu −=  (2.12)  

and 

 ( ) ( ) ( ).28
2
1

2
1

2
1

2
2

2
vutUa +=−γ  (2.13) 

If we add (2.9) to (2.11), we find that 

 ( ( ) ( )) ( ) ( ) ( ) ( ).12222
2
1

2
12221

2
2

2
vutUvutUa +++=−γ+−γ  (2.14)                                                 

Substituting the value of 2
1

2
1 vu +  from (2.13) in the right hand side of (2.14), we get 

 ( ) ( )
( )

( ) ( ).1
2

124 221
2
22

1

22
vutUa

tU

tU +=







−γ+








−−γ  (2.15)                                       

Further computations using (1.3), (2.7) and (2.15), we obtain 

( ) ( ) ( )
.

12212

2

222
2

−−γ−−γ
≤

tt

tt
a  

Next, if we subtract (2.11) from (2.9), we deduce that 

 ( ) ( ) ( ) ( ) ( ) ( ).234
2
1

2
12221

2
23 vutUvutUaa −+−=−γ−  (2.16)                                                  

In view of (2.12) and (2.13), we get from (2.16) 

( )
( )

( ) ( )
( )

( ).
23428

22
12

1
2
12

2
1

3 vu
tU

vu
tU

a −
γ−

++
−γ

=  

Thus applying (1.3), we obtain 

( )
.

232
2

2

3 γ−
+

−γ
≤ tt

a  

For ,1=γ  the class ( )ts ,γ∑D  reduced to the class ( )ts ,1∑D  of bi-starlike functions 
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with respect to symmetrical points. For functions belongs to this class, we conclude the 

following result.  

Corollary 2.1. For ,1,
2

1






∈t  let f be in the class ( ).,1 t
s
∑D  Then 

12

2

2
2

−
≤

t

tt
a  

and  

( ).13 +≤ tta  

For ,0=γ  the class ( )ts ,γ∑D  reduced to the class ( )t
sc
∑F  which was considered 

recently by Wanas and Majeed [14].  

Corollary 2.2 [14]. For ,1,
2

1






∈t  let f be in the class ( ).t
sc
∑F  Then  

2
2

52

2

t

tt
a

−
≤  

and 

( )
.

12

43
3

+≤ tt
a  
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