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Abstract

In this paper, we propose the notion of fuzzy multigroups under t-norms. Some properties
of them are explored and some related results are obtained. Also inverse, product,
intersection and sum of them will be defined and investigated properties of them. Finally
under group homomorphisms, image and pre image of them will be introduced and

investigated.

1. Introduction

Classical set theory is a basic concept used to represent various situations in
mathematical notations where repeated occurrences of elements are not allowed. This
theory was formulated by a German Mathematician George Ferdinand Ludwig Cantor
(1845-1918). Cantor defined a set as a collection into a whole, of definite, well-
distinguished objects (called elements) of our intuition or of our thought. For a set, the
order of succession of its elements is ignored and the elements shall not be allowed to
appear more than once. Mathematics requires that all mathematical notions including
sets must be exact. The issue of vagueness or imperfection knowledge has been a
problem for a long time for philosophers, mathematicians, logicians and computer
scientists, particularly in the area of artificial intelligence. Multiset in particular is

necessary because in various circumstances repetition of elements become mandatory to
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the system, for example considering a graph with loops in chemical bonding, molecules
of a substance, repeated roots of polynomial equations in mathematics, repeated readings
in volumetric analysis experiment, repeated observations in statistical samples and so on.
Taking these facts into consideration, the term multiset as (Knuth, 1981) noted was first
suggested by De Bruijin in 1970 in one of their private communications. The
development of multiset theory is in fact, one small part of the remarkable proliferation
of non-classical or non-standard set theory. A multiset (mset), which is a generalization
of classical or standard (Cantorian) set, is a set where an element can occur more than
once. Fuzzy set is a mathematical model of vague qualitative or quantitative data,
frequently generated by means of the natural language. The model is based on the
generalization of the classical concepts of set and its characteristic function. The concept
of fuzzy sets proposed by L. A. Zadeh [34] is a mathematical tool for representing vague
concepts. The idea of fuzzy multisets was conceived by Yager [33] as the generalization
of fuzzy sets in multisets framework. For some details on fuzzy multisets see [3, 6, 31].
Recently, by Shinoj et al. [28], the concept of fuzzy multigroups was introduced as an
application of fuzzy multisets to group theory, and some properties of fuzzy multigroups
were presented. In fact, fuzzy multigroup is a generalization of fuzzy groups. The theory
of fuzzy sets has grown stupendously over the years giving birth to fuzzy groups
proposed by Rosenfeld [27]. In mathematics, a t-norm (also 7-norm or, unabbreviated,
triangular norm) is a kind of binary operation used in the framework of probabilistic
metric spaces and in multi-valued logic, specifically in fuzzy logic. A t-norm generalizes
intersection in a lattice and conjunction in logic. The name triangular norm refers to the
fact that in the framework of probabilistic metric spaces f-norms are used to generalize
triangle inequality of ordinary metric spaces. The author by using norms, investigated
some properties of fuzzy algebraic structures [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26]. The study of fuzzy multigroup structure under #-norms is
very natural. The organization of this paper is as follows: Section 2 provides some
preliminaries of multisets, fuzzy multisets, sum of fuzzy multigroups. In Section 3, we
introduce fuzzy multigroups under ¢t-norms and investigate some properties and results
about them. In Section 4, we define inverse, product, intersection and sum of two fuzzy
multigroups under -norms and we relationship between them and obtain some results. In
Section 5, we define group homomorphisms on fuzzy multigroups under #-norms and we
prove that image and pre image of fuzzy multigroups under f-norms is also fuzzy

multigroups under #-norms.
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2. Preliminaries

Definition 2.1 ([29]). Let X ={x,, x,, ..., x,,, ..} be a set. A multiset A over X is a
cardinal-valued function, thatis, C, : X — N such that x 00 Dom(A) implies A(x) is a
cardinal and A(x) = C,(x) > 0, where C,(x), denotes the number of times an object x
occur in A. Whenever C,(x) =0, implies x 0 Dom(A). The set X is called the ground

or generic set of the class of all multisets (for short, msets) containing objects from X.

A multiset A = [a, a, b, b, c, c, c] can be represented as A = [a, b, c]2 ,3 OF

A= [az, b2, 03] or {% g, %} Different forms of representing multiset exist other
than this. See [10, 20, 30] for details. We denote the set of all multisets by MS (X )

Definition 2.2 ([30]). Let A and B be two multisets over X. Then A is called a
submultiset of B written as A O B if C,(x) < Cg(x) for all x O X. Also, if AU B
and A # B, then A is called a proper submultiset of B and denoted as A [ B. Note that

a multiset is called the parent in relation to its submultiset. Also two multisets A and B

over X are comparable to each otherif A [0 B or B I A.

Definition 2.3 ([6]). Let X be a set. A fuzzy multiset A of X is characterized by a
count membership function
CM,:X - [0,1]

of which the value is a multiset of the unit interval I = [0, 1]. That is,
CM ,(x) ={u', p?, ., p", .} Ix O X,
where ul, uz, o WO [O, 1] such that

Waplz.z2p =)

Whenever the fuzzy multiset is finite, we write
CM 4(x) = {u', w2, s 0},
where !, p%, ..., p" O[0, 1] such that

W=p’=..2p"),
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or simply
CM 4(x) = {p'},
for u' 0f0,1] and i =1, 2, ..., n.

Now, a fuzzy multiset A is given as

A:{CMTA(X):xDX} or A ={(CM ,(x), x): x O X}.

The set of all fuzzy multisets is depicted by FMS(X).
Example 2.4. Assume that X ={a, b, ¢} is a set. Then for CM ,(a) ={1, 0.5, 0.4}

and CM ,(b) ={0.9, 0.6} and CM ,(c) ={0} we get that A is a fuzzy multiset of X

written as

B

A= {1, 0.5,04 0.9, 0.6}
a b ’

Definition 2.5 ([6]). Let A, B 0 FMS(X). Then A is called a fuzzy submultiset of B
written as A 0 B if CM ,(x) < CM yz(x) for all x 0 X. Also, if A0 B and A # B,
then A is called a proper fuzzy submultiset of B and denoted as A [J B.

Definition 2.6 ([2]). Let A, B FMS(X). Then the sum of A and B denoted as

A + B, is defined by the addition operation in X x [0, 1] for crisp multiset. That is,
CM 5 p(x) = CM 4 (x) + CM p(x)

for all x O X. The meaning of the addition operation here is not as in the case of crisp

multiset.

Example 2.7. Assume that X ={a, b, ¢} isasetand A, B 0 FMS(X) such that

> >

A= {1, 0.5,04 09,06,03 0.9, 0.7, 0.2}
a b c

and

] >

B= {0.9, 08,03 1,08 0.3, 0.1}
a b c )

http://www.earthlinepublishers.com



t-norms over Fuzzy Multigroups 211

Then

A+B = {1, 09,038,05,04,03 1,0.9,0.8,0.6,0.3 0.9, 0.7, 0.3, 0.2, 0.1}
a ’ b ’ c )

Definition 2.8 ([4]). A group is a non-empty set G on which there is a binary

operation (a, b) — ab such that

(1) if a and b belong to G, then ab is also in G (closure),
(2) a(bc) = (ab)c for all a, b, c 0 G (associativity),

(3) there is an element ¢ [1 G such that ae = ea = a for all a 0 G (identity),

1 1

(4) if aOG, then there is an element ¢ ' 0G such that aa ' =ala=e
(inverse).

One can easily check that this implies the unicity of the identity and of the inverse. A
group G is called abelian if the binary operation is commutative, i.e., ab = ba for all
a, b0G.

Remark 2.9. There are two standard notations for the binary group operation: either

the additive notation, that is (a, ) » a + b in which case the identity is denoted by 0,

or the multiplicative notation, that is (a, b) — ab for which the identity is denoted by e:

Proposition 2.10 ([4]). Let G be a group. Let H be a non-empty subset of G. The
following are equivalent:

(1) H is a subgroup of G.

(2) x, y U H implies )cy_1 OH forall x, y.

Definition 2.11 ([1]). A t-norm T is a function T : [0, 1] x[0, 1] - [0, 1] having the
following four properties:

(T1) T(x, 1) = x (neutral element),

(T2) T(x, y) < T(x, z) if y < z (monotonicity),

(T3) T(x, y) = T(y, x) (commutativity),

(T4) T(x, T(y, z)) = T(T(x, y), z) (associativity),

forall x, y, z O [O, 1].

Earthline J. Math. Sci. Vol. 3 No. 2 (2020), 207-228
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We say that T be idempotent if T(x, x) = x for all x [0, 1].
It is clear that if x; = x, and y, = y,, then T(x;, y,) = T(x,, y,).
Example 2.12. (1) Standard intersection -norm 7, (x, y) = min{x, y}.
(2) Bounded sum f-norm T (x, y) = max{0, x + y — 1}.
(3) algebraic product #-norm T),(x, y) = xy.
(4) Drastic T-norm

y if x=1,

Tp(x, y) =qx if y =1,
0 otherwise.

(5) Nilpotent minimum #-norm

T () min{x, y} if x+y>1,
X, y)=
i 15 ¥ 0 otherwise.

(6) Hamacher product -norm

0 if x=y=0,
THo(x’y): xy
x+y-—xy

otherwise.
The drastic fnorm is the pointwise smallest f-norm and the minimum is the
pointwise largest t-norm: Tj(x, y) < T(x, y) < T, (x, ¥) forall x, y O[0, 1].
Lemma 2.13 ([1]). Let T be a t-norm. Then
T(T(x. y). T(w, 2)) = T(T(x. w). T(y 2)).

forall x, y, w, z [0 [0, 1].
3. Fuzzy Multigroups under #-norms

Definition 3.1. Let A 0 FMS(G). Then A is said to be a fuzzy multigroup of G under

t-norm T if it satisfies the following two conditions:

(1) CM 4(xy) 2 T(CM 4 (x). CM 4(»)),

http://www.earthlinepublishers.com
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(2) CM ,(x7") = CM 4 (x),

forall x, yG.
The set of all fuzzy multisets of G under t-norm 7 is depicted by TFMS(G).
Example 3.2. Let G ={e, a, b, ¢} be a Klein 4-group such that

ab=c,ac=b,bc=a,a2=b2=c2=e.

Again, let

A= {1, 09 07,05 08,06 0.7, 0.5}
e a b ¢ '
Then A O FMS(G). Let T be a standard intersection z-norm as T(x, y) =T, (x, y)
= min{x, y} forall x, y 00, 1]. Now

CM ,(ea) = CM 4(a) = 0.7, 0.5 2 T(CM ,(e), CM 4(a)) = 0.7, 0.5,
)

CM 4 (eb) = CM ,(b) = 0.8, 0.6 = T(CM ,(e), CM , (b)) = 0.8, 0.6,

7(
CM ,(ec) = CM ,(c) = 0.7, 0.5 = T(CM 4(e), CM 4(c)) = 0.7, 0.5,
),

CM ,(ab) = CM ,(c) = 0.7, 0.5 > T(CM 4 (a), CM , (b)) = 0.7, 0.5,
CM ,(ac) = CM 4(b) = 0.8, 0.6 = T(CM ,(a), CM 4(c)) = 0.8, 0.6,
CM ,(bc) = CM 4(a) = 0.7, 0.5 = T(CM , (b), CM ,(c)) = 0.7, 0.5,

CM ,(aa) = CM 4(¢) =1, 0.9 2 T(CM ,(a), CM ,(a)) =

CM ,(bb) = CM 4(e) = T(CM 4(b). CM 4 (b)) =

CM 4(cc) = CM 4(e) = T(CM 4(c). CM 4(c)) =

CM 4 (ee) = CM 4(e) = T(CM 4(e). CM 4(e)) =

CM 4(a™") = CM 4(a) =0.7,0.5 and CM ,(b™") = CM ,(b) = 0.8, 0.6
CM 4(c™") = CM 4(c) =0.7,0.5 and CM 4(e™") = CM 4(e) =1, 0.9.

Thus A O TFMS(G).
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Lemma 3.3. Let A FMS(G) and G be a finite group and T be idempotent. If A
satisfies condition (1) of Definition 3.1, then A O TFMS(G).

Proof. Let xOG, x # e. As G is finite, so x has finite order, say n >1. Then

x" = ¢ and x~' = x"'. Now by using condition (1) repeatedly, we have that

CM ,(x7") =M, (x"7") = M, (x" %)
> T(CM 4 (x"72), CM 4(x))

> T(CM 4 (x), CM (%), ..., CM 4(x))

n

= CM 4(x).
Thus A O TFMS(G). U

Theorem 3.4. Let AOTFMS(G). If T be idempotent, then for all x 0 G, and

n=1,

(1) M 4(e) = CM ,(x);
(2) CM 4 (x") = CM 4(x);

(3) CM ,(x) = M ,(x7").

Proof.Let xOG and n = 1.

)]
CM 4(e) = CM ,(xx™") 2 T(CM 4 (x), cM ,(x7"))
> T(CM ,(x), CM ,(x)) = CM , ().
)
CM ,(x") = CM 4(xx...x) = T(CM 4(x), CM 4(x), ..., CM ,(x)) = CM ,(x).

B3 M ux)=cM () 2, (x) =M 4(x).  Then  CM 4 (x) =
CM ,(x7"). O
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Corollary 3.5. Let T be an idempotent t-norm. Then A 0 TFMS(G) if and only if

CM 4 (xy™") 2 T(CM 4(x), CM 4(»))
forall x, yOG.

Proof. Let x, y 0G. If ATOTFMS(G), then
CM 4 (xy™) 2 T(CM 4(x), CM 4(y™)) 2 T(CM 4 (x), CM 4(»)).
Conversely, let CM ,(xy™") = T(CM ,(x), CM 4(y)) for all x, y O G. Then
CM 4 (x7") = M 4 (ex™') =2 T(CM 4 (e), CM ,4())

> T(CM 4(x), CM ,(x)) = CM 4(x). (Theorem 3.4 (part 1))
Also

CM 4(xy) = CM 4 (x(y™')™") 2 T(CM 4 (x), CM 4 (y™")) = T(CM 4 (x). CM 4()).
Then A OTFMS(G). a

Proposition 3.6. Let AOTFMS(G) and x O G. If T be idempotent-norm, then
CM 4(xy) =CM ,(y) Oy OG if and only if CM ,(x) = CM 4(e).

Proof. Let CM ,(xy)=CM ,(y) Uy OG. Then by letting y =e, we get that
CMA(X) = CMA(e)

Conversely, suppose that CM ,(x) = CM ,(e). By Theorem 3.4 we have that
CM 4(x) = CM 4(xy) and CM 4(x) = CM 4(y). Now

CM 4(xy) 2 T(CM 4 (x). CM 4(y)) 2 T(CM 4(y). CM 4())
= CM 4(y) = CM 4 (x"'xy) 2 T(CM 4(x), CM 4 (x))
2 T(CM 4(xy), CM 4(xy)) = CM 4(xy).
Therefore CM ,(xy) = CM ,(y) Oy OG. O
Proposition 3.7. Ler A OTFMS(G) and T be idempotent t-norm and CM ,(xy™")

=CM 4(e) forall x, y OG. Then CM ,(x) = CM ,(y).
Earthline J. Math. Sci. Vol. 3 No. 2 (2020), 207-228
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Proof. Let CM ,(xy™") = CM ,(e) forall x, y 0 G. Then
CM 4 (x) = CM 4 (xy™'y) 2 T(CM 1 (7"), CM 4(»))
=T(CM y(e). CM 4(y)) 2 T(CM 4(y). CM 4(y)) = CM 4(y)
=CM4(v7") = CM 4 () 2 T(CM A (x71), CM 4 (xy 7))
=T(CM 4 (x"), CM 4(e)) = CM (x7") = CM 4 ()
and then CM ,(x) = CM ,(»).

Proposition 3.8. Letr A OTFMS(G) and CM ,(x) # CM 4(y) for all x, y OG.
Then CM ,(xy) = T(CM ,(x), CM 4(y)).

Proof. Let CM ,(x) > CM ,(y) for all x, yOG and we get that CM ,(x) >
CM ,(xy) and then

CM 4(y) = T(CM 4 (x). CM 4())

and
CM 4(xy) = T(CM 4 (x). CM 5 (xy)).
Now
CM 4 (xy) = T(CM 4(x). CM 4(y)) = CM 4(y)
= CM 4(x"xy) 2 T(CM 4 (x7"), CM 4(x))
= T(CM 5 (x). CM 4 (xy)) = CM 4 (xy)
and then

CM 5 (xy) = CM 4(y) = T(CM 4 (x). CM 4()). O
Proposition 3.9. Let A O TFMS(G). Then
(1) A7 = {xOG:CM 4(x) = CM 4(e)} is a subgroup of G.

(2) Ay ={x0G : CM 4(x) > 0} is a subgroup of G.
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Q) If T be idempotent t-norm, then
Al =006 M, (x) = a)
is a subgroup of G for all a [ [O, 1].

Proof. Let x, y OG.
() If x, yO A", then €M ,(x) = CM ,(y) = CM ,(e). Now
CM 4 (™) 2 T(CM 4 (x). CM 4 (y™")) 2 T(CM 4 (x), CM 4(»))
= T(CM 4(e), CM 4(¢)) = CM 4(e) = CM 4 (xy ™ yx™")
2 T(CMA(Xy_l)’ CMA()’X_I)) = T(CMA(X)’_I)’ CMA(X)’_I)_I)
2T(CM ("), CM 4 (™)) = CM 4 (7).
Thus CM ,(xy™') = CM ,(e) and then xy™' 00 A”. Now as Proposition 2.10 we get that
Aisa subgroup of G.
(2) Let x, y O A, then CM 4(x) > 0 and CM 4(y) > 0. Then
CM 4 (xy™") 2 T(CM 4(x), CM 4 (y™"))
>T(CM ,(x), CM ,(y)) > T(0,0) =0

and so CM 4(xy™") > 0 and then xy™' [0 A; Thus Proposition 2.10 give us that Ajis a
subgroup of G.

(3) Let x, y O Al%l then €M ,(x) = a and CM ,(y) = a. Now
CM 4 (™) 2 T(CM 4 (x), CM 4 (y™))
>T(CM ,(x), CM 4(y)) = T(a, a) = a

and so xy_1 0 Al and from Proposition 2.10 we get that Al s a subgroup of G. U

Earthline J. Math. Sci. Vol. 3 No. 2 (2020), 207-228
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4. Inverse, Product, Intersection and Sum of Fuzzy Multigroups under #-norms

Definition 4.1. Let A 0TFMS(G). Then A™' is called inverse of A and defined as
CM - (x) = CM 4 (x") forall xOG.

Corollary 4.2. A OTFMS(G) if and only if A™' O TFMS(G).

Proof. Let x, y 0 G. If AOTFMS(G), then

ey
CM 1 (xy) = CM 4 (xy) ™ = CM 4 (y™'x7")
2T(CM (y7). CM 4 (x71))
=T(CM -1 (y), CM - (x))
=T(CM i (x), CM ().
()

CM () =M, ()T 2 oM, (7 = oM (x).
Thus A~' O TFMS(G).

Conversely, let A™' O TFMS(G). Then

1)
CM 4 (xy) = CM 4 () )" = M - ((x)™")
=cM . (y"'x)2T(CM - (y7'). CM 4 (x71)
=T(CM 4(y), CM 4(x)) = T(CM 4 (x), CM 4 ().
2)

CM, (=M () =M (T 2 eM (7T = oM, (x).

Therefore A O TFMS(G).
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Definition 4.3. Let A, B OTFMS(G). Then the product of A and B denoted as
A o B is governed by

Supx=yz T(CMA(y)’ CMB(Z)) if x= Yz,
0 otherwise.

CM 4 (x) = {

Note that

CM 4,5(x) = sup T(CM 4(y), CM 5(y™'x)) = sup T(CM 4 (xy™"), CM ().
yiG yiG

Definition 4.4. Let A, B 0 TFMS(G). Then the intersection of A and B denoted as
A B is governed by

CM 4np(x) = T(CM 4 (x). CM 4(x))
forall x 0 G.
Proposition 4.5. Let A, B O TFMS(G). Then A B O TFMS(G).
Proof. Let x, y 0 G.
(1)
CM ynp(xy) = T(CM 4 (xy). CM 5(xy))
2 T(T(CM 4(x). CM 4()), T(CM 5(x), CM g(y)))
= T(T(CM 4(x). CM g(x)), T(CM 4(). CM p(y))) (Lemma 2.13)
= T(CM anp(x). CM 0 5(¥)).
(2)
CM 4np(x) = T(CM 4 (x7"), CM 5 (x7"))
2 T(CM 4(x). CM g(x)) = CM 4np(x).
Therefore A B 0 TFMS(G).

Corollary 4.6. Let I, ={1,2,...,n}. If {A|iO1,} 0TFMS(G). Then
A =Ny, A OTFMS(G).

Earthline J. Math. Sci. Vol. 3 No. 2 (2020), 207-228
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Proposition 4.7. Let A, B O TFMS(G). Then the following assertions hold:
M (a7 =a

() If AO B, then A™' O B™..

(3)(AoB) "' =B'oA™!

@ (ANB) ' =a"nB™"

Proof. Let x, y, z 0 G. Then

M, . (x)= CM -, (x =M ()™ =cM 4(x) andso (A7) = A.

(a™)
(2)As A B so CM 4(x™") < CM z(x") and then

CM i (x)=CM ,(x"') S CMg(x7") = CM i (x).

Thus A O B™".
(3)

M 4.y (x) = CM (4. 5)(x7")

sup  T(CM 4(y™'). CM (™)

e

sup  T(CM 4(y™"). CM (= ™))

=(gy)™!

-

sup T(CM p(z7"). €M 4 (y™"))

=(z)?

sup T(CMB_l (2), M (»)

x=zy

= CM(B—IOA—I)(X)'

Then (AoB)' =B 'oA™"
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“)
CM 4y (x) = CM (45 (x7")
=7(CM , (™), M5 (x71)
=T(CM (), €M 1 ()

= CM(A—lﬂB—l)(x)‘

Thus (ANB)' =A™ NB7".
Proposition 4.8. A (0 TFMS(G) if and only if A satisfies the following conditions:
(1) Ac AOA,
2 A=A
Proof. Let x, y, z 0G such that x = yz. If AOTFMS(G), then

(1
CM 5(x) = CM 4 (y2) 2 T(CM 4 (y), CM ,4(2)) = (A A) ()

so Ao A A
(2) CM i (x) = CM 4(x") = CM 4(x) and then A™" = A.
Conversely, let xUG. As Ao A A so
CM 4(y2) = CM 4 (x) 2 (CM 4. 4) (x)

= sup T(CMA()’), CMA(Z))

x=yz

2 T(CM 4(y). CM 4(2)).

Also since A™' = A so CM ,(x7") = CM -, (x) =M 4(x).
Therefore A O TFMS(G).

Proposition 4.9. Ler A, B TFMS(G). Then (Ao B) OTFMS(G) if and only if
AoB =BoA.

Earthline J. Math. Sci. Vol. 3 No. 2 (2020), 207-228
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Proof. Let A, B 0 TFMS(G), then from Proposition 4.8 we get that Ao A 0 A and
BoBOB and A™' = A and B = B.
If (Ao B) OTFMS(G), then from Proposition 4.7 and Proposition 4.8 we get that
BoeA=B'oA" =(A-B)' = A0B.

Conversely, let Ao B = Bo A. As

()

(AoB)o(AoB)=Ao(BoA)oB
=Ao(AoB)oB
=(AoA)o(BoB)
0AoB

(2)

(AcB)'=B'oA'=BoA=AoB
so Proposition 4.8 gives us that (A o B) O TFMS(G).

Proposition 4.10. Let A, BOTFMS(G) and T be idempotent t-norm. Then
A O Ao B ifand only if CM ,(e) < CM g(e).

Proof. Let x, y, zOG and CM ,(e) < CM g(e). Then

CM (4.5)(x) = sup T(CM 4(y). CM (2))

X=yz

> sup T(CM 4 (x), CM g(e))

xX=xe

> T(CM 4(x), CM g(e))

>T(CM ,

(

> T(CM ,(x), CM 4(¢))
(x), CM 4 (x))
)

=CM ,(x

and s0 CM (4, p)(x) 2 CM ,(x) and then A T Ao B.
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Conversely, let A0 Ao B. If CM 4(e) > CM y(e), then we will have

CM (sop)(€) = sup T(CM 4 (x). CM 5(x7")

e=xx
<T(CM 4(e). CM g(e))
< T(CM 4(e). CM 4(e))
= CM 4(e)

and we get that Ao B 0 A and this is a contradiction. Therefore CM 4(e) < CM y(e). U

Proposition 4.11. Ler A, BOTFMS(G) and CM ,(e)=CMy(e) and T be
idempotent t-norm. Then A0 Ao B and B Ao B.

Proof. Let x, y, z0G and CM ,(e) = CM gz(e). Then

CM (4.p5)(x) = sup T(CM ,(y). CM p(2))

x=yz
= T(CM 4(x). CM g(e))
=T(CM 4(x). CM 4(e))
= T(CM 4(x). CM 4(x)) = CM 4 (x)
and then CM (4, p)(x) 2 CM 4(x) thatis A0 Ao B.
Also

CM (4.p5)(x) = sup T(CM ,(y). CM p(2))

X=yz

2 T(CM 4(e). CM g(x))
=T(CM g(e), CM (x))

2 T(CM g(x), CM p(x)) = CM p(x)
therefore CM (4.5)(x) = CM 5(x) and so B 0 Ao B.

Proposition 4.12. Let A, BOTFMS(G) and CM ,(e)=CMg(e) and T be
idempotent t-norm. If Ao BOTFMS(G), then Ao B is generated by A and B.
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Proof. Suppose that Ao B 0 TFMS(G). Then we show that Ao B is the smallest
containing A and B. As Proposition 4.11 we get that AL AoB and B ] Ao B. Let
C OTFMS(G) such that A, B O C and x, y, z 0 G. Then

CM (4.p)(x) = sup T(CM ,(y). CM p(2))

X=yz

IN

sup T(CM ¢ (y), CM ¢ (z))

X=yz

CM (coc)(x) = C(x)
and then Ao B [J C. Thus A o B is generated by A and B. U

Proposition 4.13. Let A, B O TFMS(G). Then A + B OTFMS(G).

Proof. Let x, y 0 G. Then

(1
CM (44 p)(xy) = CM , (xy) + CM p(xy)

2 T(CM 4(x), CM 4(y)) + T(CM g(x), CM p(y))
=T(CM 4(x) + CM p(x). CM 4 (y) + CM 4(y))

=T(CM 4. 5(x), CM 5. 5(Y)).
(2)

CM 4y (x 1) = CM 4 (x7") + CM g (x7")
> CM 4(x)+ CM g(x)

= CM(A+B)(X)-
Thus A+ BOTFMS(G).

Remark 4.14. Let {A},,, OTFMS(G). Then Y A, OTFMS(G).

5. Group Homomorphisms and Fuzzy Multigroups under #-norms

Definition 5.1. Let G and H be groups and f:G — H be a homomorphism. Let
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ADOFMS(G) and B0 FMS(H). Define f(A)0 FMS(H) and f~'(B) 0 FMS(G) as

£(CM 5) (1) = (CM y(4)) (h) = {(S)HP{CMA(g)Ig R i)ihj;r\:/(l}slzzi ’

and

FTHCM p(g)) = CM ) (8) = CM (£ (8))
forall g OG.

Proposition 5.2. Let G and H be groups and f:G — H be an epimorphism. If
AOTFMS(G), then f(A)OTFMS(H).

Proof. Let u, vDH and x, y G such that u = f(x) and v = f(y), then
£(CM ) (wv) = sup{CM , (xy)lu = f(x). v = f(y)}
2 sup{T(CM 4 (x). CM 4 (y))lu = f(x).v = f(»)}
=T (sup{CM 4(x)lu = £ (x)}. sup{CM , () Iv = f(»)})
=T(f(CM 4)(u). f(CM 4)(v)).

Also
FeM ) ™) =sup{CM ()l = £(x7)}
=sup{CM 4 (x ") u™" = £ (x)}
2 sup{CM 4 (x)|u = f(x)} = £(CM ) (u).
Thus f(A) OTFMS(H). O

Proposition 5.3. Let G and H be groups and f:G — H be a homomorphism. If
BOTFMS(H), then f~'(B) OTFMS(G).

Proof. Let x, yOG. Then

£ eM ) () = CM p(f () = CM (£ (x) £ ()
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Also

= T(CM p(f (x)), CM 5 (£ ()
=T(f 7 (CM ) (x). £ (CM 5)(¥).

FHeMp) () =M p(F(x71) = CMp(f 7 (%)

> CM (f(x)) = £ (CM ) (x).

Therefore f~'(B) OTFMS(G).
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