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Abstract

In this paper, we derive some applications of first order differential subordination and
superordination results involving Frasin operator for analytic functions in the open unit
disk. Also by these results, we obtain sandwich results. Our results extend corresponding

previously known results.

1. Introduction

Let H = H(U) indicate the class of analytic functions in the open unit disk
U={zO0C:|z|<1} and let H [a, n] be the subclass of H consisting of functions of

the form:

f(z)=a+a,z" + an+1zn+1 +.- (a0C,nON={1,2,.}).

Also, let A be the subclass of H containing of functions of the form:

f(z)=z+2akzk. (1.1)
k=2
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Let f, g O H. The function f is said to be subordinate to g, or g is said to be
superordinate to f, if there exists a Schwarz function w analytic in U with w(0) = 0 and
|w(z)| <1(zOU) such that f(z) = g(w(z)). This subordination is denoted by f < g
or f(z) < g(z) (zOU). It is well known that, if the function g is univalent in U, then
f < g ifand only if £(0) = g(0) and £(U) O g(U).

Let & hOH and Q(r, s, #;2): COxU - C. If & and P(&(z), 2&'(z), 22€"(z); 2)
are univalent functions in U and if & satisfies the second-order differential

superordination

h(z) < WE(z), 2&'(z). 228"(2): ). (1.2)

then & is called a solution of the differential superordination (1.2). (If f is subordinate to

g, then g is superordinate to f). An analytic function ¢ is called a subordinant of (1.2), if

g < & for all & satisfying (1.2). A univalent subordinant g that satisfies ¢ < g for all

the subordinants g of (1.2) is called the best subordinant.
For mON, A, jONy=NU{0}, 0<t<1 and fOA, the Frasin operator

D,),,‘l,T :A - A (see[4]) is defined by

A
Dpof(z) =2+ ) |1+ (k- 1)2(”?)(— 1)/ | a2k (1.3)
k=2 =N
It is readily verified from (1.3) that
CT (2D £ (2)), = Dy f(2) = (L= CF () D), £ (2), (1.4)

- m j+1_j
where C'(1) = Z';’:llj)(— 1)/,
Special cases of this operator include the generalized Salagean operator [1], the
Salagean differential operator [10].

Very recently several authors, Shanmugam et al. [11], Goyal et al. [5], El-Ashwah et
al. [3] and Wanas and Majeed [12] have obtained sandwich results for certain classes of

analytic functions.
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The main object of the present investigation is to find sufficient conditions for
certain normalized analytic functions f to satisfy

A Y
e {Dm—f”] <o)

and

A+1
a(2) < {D ; E;J < 0.

where ¢, and ¢, are given univalent functions in U with ¢;(0) = ¢,(0) =1

In order to prove our results, we make use of the following known results.

Definition 1.1 [6]. Denote by Q the set of all functions f that are analytic and
injective on U \E(f), where

E(f)= {Z Dou: lim f(2) = oo}

and are such that f'(¢) # 0 for { 00U \E(f).

Lemma 1.1 [6]. Let g be univalent in the unit disk U and let ® and ¢ be analytic in
a domain D containing q(U) with @w) # 0 when w 0 q(U). Set O(z) = zq'(z) ®(¢(z))
and h(z) = 8(q(z)) + O(z). Suppose that

(1) Q(z) is starlike univalent in U,

7h'(z) >0 for
(2) R{Q(z)} 0 for zOU.
If € is analytic in U, with €(0) = ¢(0), &(U) O D and
8(&(2)) + 2&'(z) W&(2)) < 6(q(z)) + z4'(z) ¥q(2)), (1.5)

then & < q and q is the best dominant of (1.5).

Lemma 1.2 [7]. Let q be a convex univalent function in U and let o 0 C, B 0 C\{0}

with
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Re{l + L(Z)} > maX{O, - Re(g}.
q'() B
If & is analytic in U and
a&(z) + Bz&'(2) < ag(z) + Bzq'(2), (1.6)

then & < ¢ and q is the best dominant of (1.6).

Lemma 1.3 [7]. Let g be convex univalent in U and let B O C. Further assume that

Re(B) > 0. If € O H[q(0), 1] N Q and &(z) + Bz&'(z) is univalent in U, then
q(z) + Bzq'(2) < &(z) + BzE'(2), (1.7)
which implies that q < & and q is the best subordinant of (1.7).

Lemma 1.4 [2]. Let q be convex univalent in the unit disk U and let 8 and ¢ be

analytic in a domain D containing q(U). Suppose that

NIEAC16)]
(”R{cp(q(z))} 0 for 200,

(2) 0(z) = zq'(2)¥q(z)) is starlike univalent in U.

If €0 H[q(0),1]1NQ, with &U) O D, 8(&(z)) + z&'(z)@&(z)) is univalent in U

and

6(q(2)) + z4'(2)®lq(2)) < 6(&(z)) + 2&'(z) A&(2)). (1.8)

then q < & and q is the best subordinant of (1.8).

2. Main Results

Theorem 2.1. Let g be convex univalent in U with q(0) =1, c O C/{0}, y >0 and

Re{l + Z;{';(ZZ))} > max{O, - Re(%]}. 2.1)

suppose that q satisfies
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If f U A satisfies the subordination

A y A Y A+l
(1 __ O J{Dmtf(Z)J + - (0) {Dm,l'f(z)} [Dm,l'f(z)} ~ q(z) +%zq’(2), 2.2)

c(x) z (1) z D), +f(2)

then

A Y
[Dm,Tf(z)} o) 23)

<

and q is the best dominant of (2.2).

Proof. Define the function § by

A Y
&(z) = (D’“—MJ . (zOU). 2.4)

Z

Differentiating (2.4) logarithmically with respect to z, we get

&2 _ v{z(l)&,rf(z))' i 1}_

(2 D) f(2)
Now, in view of (1.4), we obtain the following subordination

&)y (D,é:%f(z) ) lj'

€)@ D) s ()

Therefore,

O LARYICNEVRTIONS
(0 |

z DI’)I\’l,Tf(Z)

The subordination (2.2) from the hypothesis becomes

£(2) + 2 28(2) < a(2) + > 24'(2).
y y

Hence, an application of Lemma 1.2 with o =1 and 3 = g, we obtain (2.3).
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Theorem 2.2. Ler n; OC (i =1, 2,3, 4), y>0, o0 C/{O} and q be convex
univalent in U with q(0) =1, ¢(z) # 0 (z OU) and assume that q satisfies

Ny N3 20y, 34 30y, 24"(2) _ 24'(2)
Reql + =2 q(2) + =27 () + g7 (2) + =757 - >0. (25
{ 8 8 5 q(z)  q(2)
< 7q'(z) . . . . .
ppose that ) is starlike univalent in U. If f O A satisfies
q\z
Q(nl’ r]z’ n3’ r]4a V, 6’ )\’ m, T, Z)
<m0+ 1500 + () + 824 20
where
QN N2.N3. N4 V. 6, A, m, T; 2)
Y 2y 3y
_ Dy f(2) Dy f(2) Dy f(2)
Mt —— | T T o
Dy 1f(2) Dy, 1f(2) Dy 1f(2)
o (Dh2rR) DY) o
T\ DMRf() Dhof(2)
then
D)
—— | =<al2)
Dm,Tf(Z)
and q is the best dominant of (2.6).
Proof. Define the function § by
A+ Y
D z
§(2) = ";—f() . (zO0). 238)
Dm,l’f(z)

By a straightforward computation and using (1.4), we have
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My + No&(2) + N3E° () + € () + 5802
&(z)

= Q(Ny» N2s N35 N4y Vs O A, m, T 2), 2.9)
where Q(Nny, N2, N3, N4> Vs O, A, m, T; z) is given by (2.7).

From (2.6) and (2.9), we obtain

Ny +No&(z) + N3E2(z) + Ny (z) + & Z;((Z))

< ﬂ1*‘ﬂzq(Z)*'ﬂsqz(z)+-n4q3(z)+-6quz).
q(2)

By setting
_ 2 3 _0
e(W) = nl + n2W+ n3W + n4W and (KW) =—,w z 0,
w

we see that O(w) is analytic in C, @(w) is analytic in C\{0} and that @w) %0
w O C\{0}. Also, we get

0(2) = 2q'(2)glg(2)) = 5L
q(2)

and

h(z) = 8(q(2)) + 0(z) = Ny + Nxq(z) + N3q” (2) + Naa’(2) + 5%(;))'

It is clear that Q(z) is starlike univalent in U,
zh’(Z)} { N, m; o n4 304 24'(2) _ 2d(2)
Res =t = Redl +—=¢(z) + —=>¢°(z) + q°(z) + ——=r>0.
{ 0(z) 0 5 q(z)  q(z)
Thus, by Lemma 1.1, we get &(z) < g(z). By using (2.8), we obtain the desired result.

Theorem 2.3. Let g be convex univalent in U with q(0) =1,y >0 and Re{a} > 0.
Let f O A satisfy
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A Y
(D””Tf(z)} 0 H[q(0), 1N 0

{1_ o J{Drﬁ,rf(Z)}er o [Dﬁl,rf(Z)]y[Dﬁfrlf(Z)J
c(x) z c (1) z D), +f(2)

be univalent in U. If

and

a(2) + 2 24'(2)

Y
{1_ J[%J(Z)}y o [D;Tf(z)}y[w%f(z)} o0
ol = @l = ) Dbt
then
A Y
q(z) < [Dmr—f(z)} 2.11)

and q is the best subordinant of (2.10).

Proof. Let the function & be defined by (2.4). After some computations and using
(1.4), it is evident that

o |(PA@), o (Phos@)) [ ohE)
c” (1) z crol = D). f(2)

=&(z) + % 2&'(2). (2.12)

From (2.10) and (2.12), we get

O +gz'z.
q(z) ;zq(Z)«E(Z) y &(z)

Hence, an application of Lemma 1.3 with o =1 and 3 = g, we obtain (2.11).
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Theorem 2.4.

Let n;0OC (i =1, 2,3, 4), y>0,00 C/{O} and q be convex

univalent in U with q(0) =1, q(z) # 0 (z OU) and assume that q satisfies

zq'(z)
q(z)

Suppose that

My, 23 200, 3 s
Re{ 2 () + 2B 2() + Mt (z)}>o. @.13)

is starlike univalent in U. Let f [J A satisfy

[D“lf( 2)

D )] 0 H[q(0). 11N Q

and Q(Ny, N2, N3, Na» Vs & N, m, T; z) is univalent in U, where Q(n;, N2, N3, N4>
v, 0, A\, m, T, z) is given by 2.7). If

then

ng + an(Z) + n3q2(Z) + r]4q3(z) + 6ZC]_(Z)
q(z)
< Q(nN;, N2, N3. Ny, ¥ O A, m, T; 2), (2.14)
()Y
q(z) < | =——
m,Tf(Z)

and q is the best subordinant of (2.14).

Proof. Let the function § be defined by (2.8). By a straightforward computation and

using (1.4), we find that

Q(ny. N2. N3, Ngs V- O, A, m, T 2)

&'(2)
&(z)

=y + N2&(2) + N3E%(z) + Nyg&(z) + & 2.15)

where Q(N;, N2, N3, N4» Vs O, A, m, T; z) is given by (2.7).

From (2.14) and (2.15), we obtain

+524)

N +N24(2) + N3¢ (2) + Nyq’ (2)
q(2)
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<Ny *+N2E(2) + N7 (2) + g8 () + & (2)

&(z)

By setting B(w) = Ny + Noyw + N3w? + Nyw and @w) =

s |on

, w# 0, we see that 6(w)
is analytic in C, @(w) is analytic in C\{0} and that @(w) # 0, w O C\{0}. Also, we get

0(:) = 2¢'()glq(2) = 54

q(z)
It is clear that Q(z) is starlike univalent in U,
9'(Q(Z))} {ﬂz 2N3 2 34 3
Rey === 80 = Rey—=q(2) + == ¢7(2) + = ¢°(2) > 0.
{(P(CI(Z)) 5 5 5

Thus, by Lemma 1.4, we get ¢(z) < &(z). By using (2.8), we obtain the desired result.

Concluding the results of differential subordination and superordination, we state the
following “sandwich results”.

Theorem 2.5. Let g, and g, be convex univalent in U with q;(0) = q,(0) =1.
Suppose qy satisfies (2.1), y > 0 and Re{c} > 0. Let f 0 A satisfy

A Yy
{D’”T—f(z)] DH[L1NQ

and

[1_ o MDQ,J(Z)]VJF o {Dﬁ,,rf(z)Jy{D,ﬁf%f(Z)j
c(x) z c(r) z D), +f(2)

be univalent in U. If

q1(z) + % 2qi(z)

<[1_ o J{D%Lﬂdly+ o [%ﬁjf&qT%%ﬁf&q
ol = crol =

J Dr)r\z,rf(z)
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o
< qy(z) + 71612(2),

then

A Y
@@y<FﬁiﬁﬂJ<qﬂa

Z

and q| and q, are, respectively, the best subordinant and the best dominant.

Theorem 2.6. Let q; and g, be convex univalent in U with q;(0) = g,(0) =1
Suppose qy satisfies (2.13) and q, satisfies (2.5). Let f U A satisfies

[D“lf( 2)

0 A )] OH[L1]NQ

and Q(Ny, N2, N3s Nas Vs O A, m, T, 2) is univalent in U, where Q(ng, N2, N3, N4>
Y, O, A\, m, T; z) is given by (2.7). If

0 120 () + E) i () 5 4
1

< Q(N1, N2, N3, N4 Y5 8, A, m, T 2)

<mt T]QCZZ(Z) + HSQ%(Z) + n4q%(z) +5 ZqZ((ZZ)) .
2

then

A+1
m@%{f—liﬂ < an(2)
Dm,Tf(Z)

and q; and q, are, respectively, the best subordinant and the best dominant.

Remark 2.1. By selecting the particular values of m, T and A, we can derive a

number of known results. Some of them are given below.

(1) Taking m =1 in Theorems 2.1, 2.3 and 2.5, we have the results obtained by
Raducanu and Nechita [9, Theorem 3.1, Theorem 3.6, Theorem 3.9].
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(2) Putting m = T =1 in Theorems 2.1, 2.3 and 2.5, we get the results obtained by
Raducanu and Nechita [9, Corollary 3.3, Corollary 3.8, Corollary 3.11].

(3) Setting m =1 =1 and A =1 in Theorem 2.1, we obtain the results obtained by

Murugusundaramoorthy and Magesh [8, Corollary 3.3].

(4) Taking m =1 =1 and A =1 in Theorems 2.3 and 2.5, we have the results
obtained by Raducanu and Nechita [9, Corollary 3.7, Corollary 3.10].
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