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Abstract

In this paper, fixed point theorems of the Kannan type are obtained in the setting of metric
space and metric space endowed with partial order, respectively, for self-mappings that

are composition operators.

1. Preliminaries

Definition 1.1 [1]. The composition operator Cy with symbol { is a linear operator

defined by the rule
CLIJ (f) = f ° lIJ,
where f o denotes function composition.

Remark 1.2. Although every real number is a complex number, but not conversely.

We assume the domain of the composition operators studied in this paper is R.

Definition 1.3. Let (R, d) be a metric space, and Cy(f) be a self map of (R, d).

We say Cy(f) isa W~ f -Kannan contraction if there exists k [J {0, %) such that the

following inequality holds for all x, y O R,
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d(Cy(f) (x): Cy(£) () < kla(W(x). Cy (f) (N +[d(W(y). Cy(F) )]

Remark 1.4. Obviously if  is the identity, then fis a Kannan contraction [2], as it

satisfies

d(fx, fy) < kld(x, fx) +d(y, /)]
for some k O [O, %) and all x, y OR.

Definition 1.5. Let Cy(f) be a self-map of R, we say Y(b) O Q(R) is a fixed point
of Cy(1) if ) 0) = WD)

Definition 1.6. Let (R, d) be a metric space. A sequence {W(x,)} in W(R) is called

convergent, and in particular, converges to Y(x) O Q(R), if lim, o d(W(x,), W(x))
=0.

Definition 1.7. Let (R, d) be a metric space. A sequence {((x,,)} in Y(R) is called
Cauchy, if lim,, ,, _ o d(W(x,), w(x,,)) =0.

Definition 1.8. We say (W(R), d) is complete, if every Cauchy sequence in
(W(R), d) is convergent in (Y(R), ).

Using ideas from [3], we introduce the following

Definition 1.9. Let (X, <) be a partially ordered set, and the composition operator

Cy(f) be a self-map of X. We say Cy(f) is non-decreasing if for all Y(x;), Y(x,)
O w(X),
Wx) < W(x,)
Cy(f) () = Cy(f) (x2)
Notation 1.10 [4]. S will denote the class of all functions 3 : RY [0, 1) with
(@ R" ={tOR|r > 0},

(®) B(z,) —» 0 implies ¢, — 0.
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2. Kannan Type Fixed Point Theorem

Theorem 2.1. Let (R, d) be a metric space. Suppose the composition operator

Cy (f) is a self map of (R, d) which is a Q — f -Kannan contraction. The fixed point

of Cy is unique, provided (W(R), d) is complete.

Proof. Define the sequence {Y(y,)} in W(R) by W(y,+1)=Cy(f)(y,). Now

observe we have the following

d(W(yne1) W(rn+2)) = d(Cy(£) (ya): Cy(f) (1))
< Kd(W(y,). Cy(F) ) + d(W(r1). Cyp(£) (p1))]
= Kd(W(y,). W(ne1) + dW(yna1): W3pa2))]-

From the above, we deduce that

AW (e1) W0ne2)) < @), B

Set h:= , and observe in general for all n 0N U{0}, we have

d(W(yn) W(yn+1)) < A"d(W(x0). Wn1))-

Now consider n, m 0 N U {0} with n < m, and observe we have the following

d(W(y,) W) < dW(y,). W) + -+ dW(yp-1) W)
< W"d(W(yo), W) + -+ " d(W(vo). W)
< Wd(W(yo) W) + A" d(W(yo), W) + -+
= R"d(@(yo). W) (L + R+ )

n

< L a(Wlo) wOn))

Since h<1, if we take limits in the above, we deduce that

im o , =0, and hence is a Cauchy sequence. By the
lim,, o0 d(W(,)s W(y)) d hence {W(y,)} i hy seq y
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completeness of (P(R), d), there is P(a") such that lim,, _ , Y(y,) = Y(a"). Now we

show the fixed point exists. Suppose Cy (f )(aD) Z L|J(aD), and observe we have the

following
0 < d(W(a). Cy(f)(@)
< d(W(a"), Cy(F) () + dW(Cy(F) (va). Cy(f) (@)
< d(W(a"), W(yn+1)) + kAWl ), Cy (1) () + d(Wla™), Cy (1) (@)]

= d(W(a"), W(y,+1)) + KdW(y,). W(3,41)) + dW(a"). Cy(£) (D).

Now taking limits in the above as n — o, we deduce that
d(W(a"). Cy(f)(@") < ka(W(a"). Cy(f)(a").

Since 1 —k # 0 for any £ [ [0, %), the above inequality gives

d(w(a"). cy(f) (@) =o.

It now follows that P(a") = Cw(f)(aD) and so ((a") is a fixed point of Cy(f)

Finally, we show uniqueness of the fixed point. Suppose lIJ(bD) is any other fixed point

of Cy(f) for which (a") # Y(b"), then we deduce the following
d(W(a"), w(b) = d(Cy(£) (@), Cy(F) (")
< kdW(a"). Cy(f) (@) + "), Cy () @)
= kld(W(a"), w(a") +d (W), w(EO)]

=0.
Since the metric is nonnegative, the above inequality implies that d(ljJ(aD), ljJ(bD)) =0,

and hence lJJ(aD) = llJ(bD). It now follows that the fixed point is unique and the proof is

complete. (]
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3. Application to Partially Ordered Sets

Theorem 3.1. Let (R, <) be a partially ordered set, and the composition operator

Cy (f) be a non-decreasing self-map of R satisfying

d(Cy () (x), Cu(f) () < B( d(W(x). Cy (/) (x)) + d(W(y). Cw(f)(y))]

2

(d(lIJ(X), Cy(£)(x) + d(W(y). Cy(f) (y))J
2

for all BOS, Y(x), Y(y) OW(R) such that Y(x) < Y(y). Assume (W(R), d) is

complete, and suppose further that either
(@) Cy (f) is continuous
(b) W(R) has the property, if a non-decreasing sequence {Y(x,)} — W(x), then

W(x,) < W(x)
forall n 2 0.

If there exists Y(xo) OW(R) such that W(xy) = Cy(f)(xo), then Cy(f) has a
fixed point in W(R).

Proof. Let Y(xy) be given as in the theorem. Then W(x) < Cy(f)(xp). If
W(xg) = Cy(f)(xp), then W(x) is a fixed point. Suppose W(xy) < Cy(f)(xp):
Define. (sy) = Cy (/) (10). W) = Cy (/) (). and in genera,

qJ(xn) = Cl]J(f)(xn—l)
forall n > 1. Since Cy(f) is non-decreasing, we have
W(xp) < Cy(f) ()
= (x)

=< Cy(*) (%)
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IA

If for some m, W(x,,) = W(x,+1), then Y(x,) is a fixed point of Cy(f). Hence we

assume that Y(x,,) # W(x, ;) forall n > 0. Since

Cy (") (x0) = Wlx,) = Cy (") (x0) = Wlxpa1).

It follows that for all n>1, Y(x,) and W(x,4;) are comparable elements. From the

inequality of the theorem, we deduce the following

d(W(xy41). W) = d(Cy(£) (). Cy(f) (x-1)
< B{d(w(xn—l)’ Cy(f) Gep)) + d (W), Cy (f)(xn))]

2

( d(Q(xn-1). Cy(f) (1)) + d(WCxa), Cy(f) (xn))}

2

By Notation 1.10, we deduce the following

d(W(x,41). Wxy)) = d(Cy () (x5), Cyp(f) (x-1)

http://www.earthlinepublishers.com
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- (d(w(xn-l), Cy () (xn-1)) + d(W(xy,). Cq;(f)(xn))J
B 2

_ (d(w(xn-l), Wix,)) + d(W(x,). w(xn+1)))_
2

From the above, we deduce the following

d(W(xy+1) W, )) < d (W, ). Wlx,—1)).

From the above, we deduce that the sequence {d(Y(x,+;), W(x,))} is a monotone

decreasing sequence of non-negative real numbers, and consequently, there exists r = 0,
such that

lim d(W(x,+1), W(x,)) = r.

n— 00

We claim that r = 0. If not, observe we have the following

d(@(xn+1), Wxa))
d(Wx,-1), Wix,)

< B(d(w(xn-l), Cy(f) (1)) + d (W), Cl]J(f)(xn))J

2
<l

Taking limits in the above as n — o, we deduce the following

It is now clear that

. B[d(w(xn—l)’ Cy (f)(xn-l)z) +d(Q(x,), Cw(f)(xn))) .

n— o0
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that is,

- d(Wlx,-1), W(xn)) + d(Wlx,) Wxa+1)))
lim B( 1 > 1 )_ 1.

1 — 00

By Notation 1.10, we deduce the following

L dm). W) + d(,). W)

n -0 2

which is a contradiction, since we assumed r > 0. However, the above equation says

otherwise, it now follows that the claim is true, that is,

lim d(W(x,+1), Wlx,)) = 0.

n-o

Now we show that the sequence {Y(x,)} is Cauchy. Suppose not, then given € >0, we
can find sequences {m(k)} and {n(k)} such that for every natural number k,

n(k) > m(k) > k, and
L) W)= €

For each k > 0, corresponding to m(k), we can choose n(k) to be the smallest integer

such that the above inequality holds. It follows for all £ = 1, we have
d(W(xm()) Wn(r)-1)) <&
Consequently, for k > 1, we deduce the following
& < d(W(xn(k)). Wlxu(r)))
< d(W(xn(x)) Wen(r)-1)) + d(Wlea(r)-1): Wlra(r)))
< &+ d(W(x,()-1) Wxa(r)))-

Since lim,, _ o d(W(x,41)» W(x,)) =0, if we take limits in the above inequality as

k — oo, we deduce the following

lim d(@(x(k)). Wlra(r))) = €.

k - o
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Since

it follows that W(x,()-1) and W(x,)-1) are comparable. Since W(x,)=
Cy(f)(xp-1) and d(Wx()), W(xy())) 2 € we deduce the following from the

inequality of the theorem, for all £ = 1,
e < d(W(xn(x)) Wlxue))
= d(Cy(f) (a(i)-1), Cy(f) Xm(ie)-1))

. B(d (WCaa()-1) Cy () (n(i)-1)) + AW nr)-1)s Cyp () i) 1 ))J
- 2
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d(Wx()-1) Cy(F) (Ka(e)-1)) + dWxm(ie)-1), Cyp(F) (Kn()-1))
2

< AWl )-1) ) + W) 1) o))
5 .

By the above and Notation 1.10, we deduce the following from the inequality of the

theorem

d(Cy(f)(2), Wy 1)) = d(Cy () (2): Cy(£) (x))

- B(d(tll(Z), Cy(£)(2)) + d(W(x,). Cy (f)(xn)))
B 2

(d(lb(Z), Cy(f)(2)) + d(W(x,). Cy(f) (xn))j
2

d(W(z), Cy(f)(2)) + d(Wlxa), Wlxn+1)
(T J

[d(w(Z), Cy(£)(2)) + d(W(x,), w(xn+1))j

2

2 4W(z). Cy(£) () + d(Wlxn), Wlxner))
> :

Since lim,, _ o, W(x,) = Y(z) and lim,, _ o, d(W(x,41), W(x,)) =0, if we take limits in

the above inequality as n — o, we deduce the following

2 AW(z). Cy(1) (=)
< : :

d(Cy(f)(2). W(z))

The above implies that
Cy(f)(2) = W(z).
It now follows that Cy,(f) has a fixed point in (Q(R), d). O

Now we show uniqueness of the fixed point via the following
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Theorem 3.2. If in the previous theorem, it is additionally assumed that for every
P(y), W(z) OW(R), there exists Y(w) O PY(R) which is comparable to P(y) and Y(z)
and is such that P(w) < Cy (f)(w), then the fixed point in the previous theorem is

unique.

Proof. Assume there exists W(z), Y(y) O @(R) which are fixed points of Cy(f),

and consider two cases as follows.

Case 1. Y(z) and Y(y) are comparable.

Since lim,, _ o d(W(x,+1), W(x,)) =0, if we take limits in the above inequality as

k — oo, we deduce the following

=0

(@) -1): Wra(x))) + AW (Ee)-1): lp(xm(k)))J
2

[ limkaoo(

which contradicts our assumption that € > 0. It follows that the sequence {W(x,)} is

Cauchy. Since (Y(R), d) is complete, there is Y(z) 0 WY(R) such that

lim W(x,) = W(z).

Now we show the fixed point exists. For this, suppose (a) of the theorem holds, that is,

Cy(f) is continuous, then since W(x,) = Cy(f)(x,-1), and lim, _ o, W(x,) = Y(2),
we deduce the following

W(z) = lim Y(x,)

n— o0

= lim Cy(f)(x,-1)

n— o0

= Cy(f)(lim x, ;)

= N0
Now we assume that (b) of the Theorem holds. Since
W(xg) < Cy(f) ()
= W(x)

Earthline J. Math. Sci. Vol. 3 No. 1 (2020), 105-119
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and lim, _ o W(x,) = W(z), it follows that {W(x,)} is a nondecreasing sequence in

Y(R) with Y(x,) — W(z), thus (b) of the theorem implies that

W(x,) = W(z),
then since

W(xg) < Cy(f)(x0)
= Y(x)
=< Cy(?) (%)
= Cy(f)(x)
= Y(x,)

= Cq;(f3)(x0)

http://www.earthlinepublishers.com
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(PN

=< Cy (/") (%)

= lIJ(xn+l)

PN

we deduce that Cy(f")(y) = @(y) is comparable to Cy(f")(z) = W(z), forall n > 1.

It follows from the inequality of the theorem, that we have the following

d(@(z). W()) = d(Cy (") (2). Cy(f") ()

2

< B{d(w(z)’ Cy(f")(2) + d(W(y). Cy(f ")(y))J

{d(w(z), Cy(F")(2) + d(W(y), Cq;(f”)(y))J
2
=0
hence Y(z) = W(y).

Case 2. (z) and Y(y) are not comparable, then there exists Y(w) 0 Y(R) which is
comparable to Y(z) and (y). Since Cy(f) is non-decreasing, it follows that

Cy(f")(w) is comparable to Cy(f")(y)=w(y) and Cy(f")(z) = W(z), for all

n 2 1. From the inequality of the theorem, we deduce the following
d(W(y) W(z)) < d(W(y). Cy(f") (W) +d(Cy (f7) (W), ¥(z))
=d(Cy(£") (), Cp (") (W) + a((Cy (F") (w), Cy(£")(2))

Earthline J. Math. Sci. Vol. 3 No. 1 (2020), 105-119
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. B{d(qp(f”)(w), Cy(F" W) +d(Cy(F") (7). Cw(f”'l)(y))J
a 2

{d(cw (f™) W), Cu(F™ W) + d(Cy (7" (). Cq;(f”)(y))J
2

. B(d(CqJ(f"_l)(W), Cy (") (W) + a(Cy (") (). Clp(f")(Z))J
2

{d(cw (SN W), Cu(F™) W) + d(Cy (£ (=) Cy () (z))}
2

2 A€y (7)), Cy (" W) +d(Cy (") (). Cp(f™) ()
a 2

d(Cy(f" ) (). Cy(F") W) + d(Cy (F" ) (2). Cy(f") (2)) _
2

+

Since Y(w) < Cy(f)(w), then the previous theorem implies Cy(f")(w) — W(p),
where (p) is a fixed point of Cy(f). Thus, d(Cw(f"_l)(w), Cy(f")(w)) - 0 as
n — oo, Thus, taking limits in the above inequality, we get d(P(y), W(z)) < 0, that is,
W(y) = W(z) and the proof is finished. O

4. Concluding Remarks and Further Recommendation

In the present paper we have obtained some Kannan type fixed point theorems for
composition operators in metric and partially ordered metric spaces. An interesting
direction to consider is the fixed point theory for bivariate composition operators,
perhaps inspired by [5] and related works. In this context, we say the bivariate

composition operator is a function Cy(F): R xR = R defined by the rule

Cy(F)(x, )= F(W(x), w()).
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