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Abstract

In the present paper, we introduce a new subclass of harmonic functions in the unit disc U
defined by using the generalized Mittag-Leffler type functions. Coefficient conditions,
extreme points, distortion bounds, convex combination are studied.

1. Introduction

A continuous complex-valued function f =u +iv defined in a simply complex
domain D is said to be harmonic in D. In any simply connected domain, we can write

f = h+ g, where h and g are analytic in D. A necessary and sufficient condition for f to

be locally univalent and sense preserving in D is that | #'(z)| > | ¢'(z)|, z O D.

Clunie and Sheil-Small [7] introduced a class SH of complex valued harmonic maps

f which are univalent and sense-preserving in the open unit disk U ={z:| z| <1} and
assume a normalized representation f = h + g, where f(0) = f,(0) -1 = 0. Then for

f = h+ g OSH we may express the analytic functions / and g as

00

h(z)=z+Zakzk, g(z):Zbkzk, | by | <1. (1)
k=1

k=2
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Later on, Sheil-Small [9] investigated the class SH as well as its geometric
subclasses and obtained some coefficient bounds. Since then, there have been several
related papers on SH and its subclasses. Connectivity of geometric functions and
hypergeometric functions with harmonic functions is seen through some of these papers
(61, 41, [5], [31, [2], [1]). The Mittag-Leffler and generalized Mittag-Leffler type
functions was first introduced by the Swedish mathematician Mittag-Leffler [8] and also
studied by Wiman [14]. It is a special function of z O C which depends on the complex

parameter A and is defined by the power series

00

k
_ z
Ea(Z)—Zm,GDC, R(G)>O,ZDC. 2)

A first generalization of Ey(z) introduced by Wiman [14], is the two-parametric M-L

function of z O C, defined by the series

Eq p(z) = Z B+ i) ,a,pOC, R(@) >0, R(B) >0, z OC. 3)

Prabhakar [10] introduced a three-parametric generalization of Lpg B(z) defined in (3) as

a kernel of certain fractional differential equations in terms of the series

(Z)ziM a,BOC, R(@) >0, R@)>0,z0C. 4
' ! a ’ ee

Due to its integral representation Eg B(Z) is considered as a special case of Fox’s H-

function as well as of Wright’s generalized hypergeometric ,W,, so called Fox-Wright
psi function of z [0 C. Further extensions of the M-L function to four parameters, Salim

[12] introduced the function in the form lng(’ B(Z) in the following form

Ey’é(z) = Z L (5)
GPE =T+ ak) (9),

where a, B, y, 80 C, min(R(a), R(B) > 0, R(y), R(3) > 0), z O C. Recently, Salim

and Faraj [13] introduced a new generalization of Mittag-Leffler function associated
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with Weyl fractional integral and differential operators as follow
(V)i ZF
Ey’ 6’ q b = —q . 6

where a, B, y, 80 C, min(R(a), R(B) >0, R(y), R(3) > 0), zOC, with ¢, p OR,,

g <R(a)+ p, and (y),, denotes an extended variant of the Pochhammer symbol,
defined by (y),, = '(y +qn)/T(y)-

Corresponding to EY gz(z), we define the function Og% (z) by

, O, _ .0,
OX’B";(z) =z DE&/,B,%(Z)

. (¥V)g(x-1) ¢
L a1,

Now, for fOA mUON, we define the following differential operator:

q)&é,q,a,B,pf:A — Aby
0 _ .0,
W.5.q.a.p.pf (2) = f(2) DO% 3.7 (),

pr,i'),q,(x,B,pf = Z[f(Z D@ q (Z)]

1 _
(m + ULP\’/??aq,G,B,pf(Z) = Z[q)y,&q,d,&p] + mw\’f&qﬂ,&p’ z0U.

Thus it is obvious to see from above that

Wi's g.a.p pf(2) = 2

LN D V) g(x-1) o
,;2 (k =1)! F[B +a(k - 1)] (6)p(k—1) k< - 7

Note that, when a =0, B =y = & = 1, we get Ruscheweyh Operator [11].

Throughout this section, unless otherwise stated, we shall use the notation
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. _ (m+1), (V)q(k—1)
V-0.0.0.Bp Ty TR + a(k - 1) (3) (k1)

Involving the generalized Mittag-Leffler function as defined in (6), for
0<sn<1,mON,n0ONy, m>n and zOU, let SH(m, n, n) denote the family of

harmonic functions f of the form (1.1) such that

l_l_,m
%{—V’a"”“’&”} >, ®)

n
Wy, 5,9,0,8, p

m

where q—’\'&, ¢.0.8,p = W.5.4,0.B, ph(z) +(=1)" q”\’;}é, q,0,B, p g(2)-

We let the subclass SH(m, n, n)) consist of harmonic functions f,, = h + g, in

SH(m, n, ) so that hand g,, are of the form

[e)

W)= 2= ) a2, gu(x) = (1) Y bt 9)
k=1

k=2
The class SH (m, n, ) includes a variety of well-known subclasses of SH.

The object of this paper is to examine some generalized Mittag-Leffler function
inequalities as a necessary and sufficient condition for univalent harmonic analytic
functions associated with certain generalized Mittag-Leffler function to be in the

function class SH(m, n,n). The coefficient condition for the function class
SH(m, n, n) is given. Furthermore, we determine extreme points, a distortion theorem,

convolution conditions and convex combinations for the functions fin SH (m, n, n).

2. Coefficient Bound

We begin with a sufficient coefficient condition for functions fin SH (m, n, n).

Theorem 2.1. Let f = h+ g be given by (1). If

i quyrfé’q’a’ﬁ’p _ncD’;fB’q’a’B’plakl
k=1 I=n
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CDm _ _1 m—n CDm
+_¥.8.4.0.Bp (1 )""n V,&q,G,B,Plbk qsz. (10)
-n

Proof. If z; # z,, then

f(z1) = f(z0)

5 1-| &)~ e(z)
h(z) = h(z3)

h(z) = h(zy)

0 k _ _k
Zkzlbk(zl 2)

=1-
® k _ _k
(a4 —22) + Zkzzak(zl - 2)
oo Zk:1k|bk|
1= k]
o Pvsq.app ~ 0Ny s a0 p
Z 1 - 1 — rl Z 07
00 qu —ﬂCDn
_ Y.%.4.9.B, p v.%.q.0,B, p
! Zk:Z 1-n | ay |

which proves univalence. Note that fis sense-preserving in U. This is because

@ =13 Kag =

>1_zoo qJCTE,q,a,B,p _nq)c,é,q,a,ﬁ,p | a |
k=2 1-n k

m m-—-n n

o PVsgapp = 0""NPY 54060

2 Z | by |
k=1 l—r]

o DY, 0o = (=1)"""nNPY 5.4.a k
>zk:1 Y, 0,9, ’B’p 1_n Y, 0,9, ,B’plbkllz |

[oe]

2> Kb |2 2] 2'(2)]. (1)

k=1
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Using the fact that R(w) >n if and only if [I-n+w|=|1+n-w]|, it suffices to

show that
(=N Wy 5.q.0.8 p(2) + WWs g.a.p p(2)]
_l(l + n)w\}z&q,d,&p(z) - qJ\’/?}&q,(x,B,p(Z)l > 0. (12)

Substituting the value of ®V'5 , @ ,(2) and @Y 5, o g ,(2) in (11) yields, by (9),

that

(=)W 5 q.0.8p F Woqap ! ~IT+M¥Ws 4 ap, ~ Weqgappl >0

_|(2 n Z+Zk z[cby,ﬁ,q,(x,B,p( )+(Dy,5,q,(x,[3,p]akz

© k
T S L PR () P G G A PO

o k
—-|-nz+ Zkzz[q)gfa,q,a,g,p —(1+N)®Y 5 4 0.p pla’|

- (_ 1)nzk:1[(_ l)m—n g/rfi'),q,O(,B,p - (1 + n)q)c,é,q,a,B,p]bkzk'
© k
2 2(1 - ﬂ)| Z | - Zkzzz[q)g/n,é,q,a,&p _nq)c,f),q,(x,ﬁ,p]l ax |Z|
© k
S I (R LA P W G Vi A s A K

e N (G Kot/ (R LR | PR E

00

V.5 -n®y s
=2(1—n)|z|{1—z e L1 L
k=2

_i gé,q,a,ﬁ,p _(_ ) nmy’é’q7G’B’p|b || Zlk 1}
1

-n
>2(1-n)| z|{1- Z ¥.8,9.0,8,p v,&q,OhB,pla |
k=2 I=n
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_q1\m—n n
(-1) ncpv,&q,d,ﬁ,p
- | b |

<) ¢m5 —
+§: ¥.8,q,0,0B, p
k=1

This last expression is non-negative by (10), and so the proof is complete.

The harmonic function

(o] 1_
HOREED IS —
n Y.8,4,0,B, p

k

1-n k
_(_ 1)m—n o" Yz s (13)
N®y5,q.0.8p

where m ON, n 0N, and Zz:2| xp |+ ZZO=1| yi | =1 shows that the coefficient

bound given by (10) is sharp. The functions f of the form (13) is f 0O SH(m, n, n),

because
n

q)};fésqaavﬁvp _nq)cvésqsavﬁvplak | + q)’yrfé’q’aaBap _(_ l)m_nnq)ysavq’usﬁsp |bk |

Z 1-n I-n

co
k=1

=1+ e [+ [y =2
k=2 k=1
In the following theorem, it is shown that the condition (10) is also necessary for

functions f,, = h + 5, where i and g, are of the form (9).

Theorem 2.2. Let f,, = h+ 5 be given by (9). Then f,, U §H(m, n, n) if and

only if
Z[(q)gfé,q,(x,ﬁ,p _nmc,é,q,a,B,p)l ai |+(q)§lr56,q,a,[3,p _(_ l)m_nnmc,é,q,(x,&p)l by |]
k=1
< 2(1 - r]). (14)

Proof. Since SH(m, n, n) 0 SH(m, n, ) we only need to prove the “only if” part

of Theorem 2.2. To this end, for functions f of the form (9), we notice that the condition
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(8) is equivalent to

o k
(L=n)z- Zkzz OV 5. q.a8p " NPy5q.0.p p)k?

2m -1 O - —k
(=)™ Zk:1(¢%,q,d,&p —C0"NPY 5 g aup )T

” ” >0. (15)
_ n k _q\m+n-1 n -k
z Zkzzq)v,&q,d,&pakz +(-1) ZkZchV’&C]»U»BstkZ

The above condition (15) must hold for all values of z on the positive real axes, where,

0<|z|=p<1, wehave

*© k-1
1- rl - Zk:z (q)ryrf6,q,(1,ﬁ,p B nmc,é,q,a,ﬁ, p)akl"l

0 - k-1
_Zk=l( gfé,q,(x,ﬁ,p _(_l)m nncbc,ﬁ,q,(x,ﬁ,p)bku

_ © n k-1 _q\ym—n n k-1
1= s gap pad ™ + (1) o1 PY.5,q,a,8, pbik

=0. (16)

If the condition (14) does not hold, then the numerator in (17) is negative for sufficiently

close to 1. Hence there exists a zy = M in (0,1) for which the quotient in (17) is

negative. This contradicts the condition for f,, O SH(m, n,n) and so the proof is

complete.

3. Distortion Bounds

In this section, we obtain distortion bounds for functions fin SH (m, n, r]).

Theorem 3.1. Let f,, O SH(m, n, n). Then for | z| <1, we have

L e =), o
()< (o D+ ( ) 1= IbllJu,
RO A T2 N I VA T

and

1 (1-n) _1-(-1)""n Jz
fm() 2(1_b) - _ - - b | L5,
@)1= (= [Yz]’"[[Yz]’"”—n AT

http://www.earthlinepublishers.com



Subclass of Harmonic Univalent Functions ... 147

m_ . (v)
where [Y,]" = (m +1) [m}

Proof. We only prove the left-hand inequality. The proof for the right-hand

inequality is similar and is thus omitted. Let f,, O SHY g%':(r]) Taking the absolute

value of f,,, we have

© k k © —k
z —zkzzakz +(-1) Zk:1bkz

<(+]p |)U+zk:2(| ay | +| by [Ju"

| fn(2)] =

<(1+] b |)H+Zk=2(| ap | +| by W2

1-n
[Y2]"[Y2]"™" = n

=1+ by [Ju+

ar | +] b u?

x 2:22 [Yz]m([ri]:_n -n) (

(1-n)y?

[Y2]"([Y2]""" =n)

<(U+[b Ju+

XZOO (D’\/’Zé’q’a’B’p —I’]CDC,&Q,G,B,I, |(l |
k=2 1-n k

V5. q.0.8p ~(10)""NPY 540 p
+ —n | by |

<(1+]b )+ (1-n) {q)%,q,m&p _nq)c,&q,a,&plakl
-n)

YL ]" (Y] 1-n

q)(/rf&q,d,&p -(= l)m_nnq)c,&q,d,&p 2
+ -1 | by | {u”

The following covering result follows from the left hand inequality in Theorem 3.1.
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4. Convolution, Convex Combinations and Extreme Points

In this section, we show the class SH(m, n, n) is invariant under convolution and

convex combination.

For harmonic functions f of the form

TNOEEED SN PAELRT ) G S e

and

Fa@) = 2= 14l + ()" B |2

we define the convolution of f,(z) and F,,(z) as
— — . k c -
(fn OFu)(2) = fu() OF(2) = 2= D Jag [| Ac [ + (0 D 1o | Be |25 (D)
k=2 k=1

Theorem 4.1. For 0 <p<sn<l, let f, U §H(m, n,n) and F, 0 E(m, n, p).

Then the convolution
fn OF,, O SH(m, n,n) O S(m, n, p).
Proof. Then the convolution f,, OF,, is given by (17). We wish to show that the
coefficients of f,, OF,, satisfy the required condition given in Theorem 4.1. For

F, O SH (m, n, p), we note that | A, | <1 and | By | < 1. Now, for the convolution

function f,, OF,,, we obtain

Zoo qn,\,lrfa’q’a’B’p _pmc’é’q’a’ﬁ’pla ||A |
k=2 1_p k k

o O ~ (- 1" " pl
Y:8,4,0,B, Y.9.4.a.B,
+Zk:1 EnE -p EE2E by || By |

m n
< Zoo q)y,é,q’d,ﬁ,]) B pq)y,é’q’d’ﬁ’p | a |
- k=2 1-p k
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+Z°o qngfé’q’a’ﬁ’p _(_ ) pq)y’a’q’a’B’plb |
k=1 l—p

<Z°° ®y.5,q.0.8.p ~ nq)v,&q,d,&pl |
- k=2 1-n

m m-—n n
+Z°° PY5.q.a.pp (1) ”‘Dv,&q,a,&plb |
k=1 1-n k

<1.

Sincee 0<ps<n<l, and f,dSH(m n,n), f, OF, dSH(m, n,n)0
§H(m, n, p).

Next, we discuss the convex combinations of the class SH (m, n, n).
Theorem 4.2. The family SH(m, n, n) is closed under convex combination.

Proof. For i =1, 2, ..., suppose that f,, ; O SH(m, n, n), where

fn, (@) = }]akﬂz +( ml}ﬂwkﬂz (18)

Then by Theorem 2.2,

m
Zoo q)y’a’q’a,B,p r]cDV,é,q,O(,B,p )

q)m m-—n q)
, PVsg.0.8p (1) N®v.8q.08.p J 2. (19)
-n

(o] . . .
For ijl ;= ,L0<t ;< 1, the convex combination of [, j may be written as
(o] 00
_ , 1)k
ZJ =1 me J( ) < Zkzz(zj':ltj|ak»] DZ
_ 1IN © —k
1) Zk=1(zj=1tj| bk,j DZ :
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Then by (4.3),

m _ n
Z‘” Py.5.q.0.8.p ~NPy.5.q.0.p Z‘” -
k=1 1-n j=1J k,j

m m-—n n
L Ov8qapp (10""N®y 5,4.0.8.p ZW o
1_ n ]:1 J k?J

m _ n
=N o | Pysgapp nq)v,&q,ol,B,pa '
- Zi=l i Zkzl 1- ko g
n

m m—n n
 Pragapy = CU" NPsqapp, ]}
> J

1-n

S2) =2

and therefore
2o ifn, (@) O SH(m, n, n).

Corollary 4.3. The class SH(m, n, n) is closed under convex linear combinations.

Proof. Let the functions fm,j(z) (j =1,2, .., m) defined by (4.2) be in the class

SH(m, n, n). Then the function @(z) defined by
w(z) = Wy, () + (1= W) fn, ;(2). O, (20)
is in the class SH (m, n, n).

Next, we determine the extreme points of closed convex hulls of SH (m, n, r]),

denoted by clco SH(m, n, n).

Theorem 4.4. Let f,, be given by (10). Then f,, U SH (m, n, n) if and only if

fn(D) = S X (2) + Yo (L an
k=1
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where

1-n
m _ n
¥.0,9,0,B, p nq)v,é,q,a,ﬁ,p

m(z) =z Iy (2) = z - &, (k=2 ),

0]

1 I-n

m-—n
gé,q,a,ﬁ,p _(_ 1) ncbc,&q,a,ﬁ,p

(k=12 ),

&m (2) =z +(=1)""

X =1- zzozz Xy — 220:1 Y, 20, X; 20,Y, 20. Inparticular, the extreme points

of SH(m, n, n) are {h} and {gmk}.

Proof. For functions f,, of the form (21) we have

Fn(2) = D0 X () + Vg, (2)]

0 00 l—n k
:Z (Xk +Yk)Z_Z XkZ
k=1 k=2 mm _ n
Py.5.9.0.8.p ~NPy.5,9,0,8, p

-1\ 1-n —k
HE)mTS . vz,
n= q’ilrf&q,a,ﬁ,p - (=" n”q)c,&q,a,ﬁ,p

Then

m
ZW q’y,é,q,or,ﬁ,p
k=2

n
_nq)y,ﬁ,q,(x,ﬁ,p 1-n

- m n
I=n J(Dv,&q,a,ﬁ,p ~N®y.5.4.a,8p

X —

zw ( v8.q.0.8.p ~(=1)"""NPY5 4 ap.p 1-n v
&
k=1

—_ m m—n n
I=n ]q)v,&q,a,&p_(_l) NPy.8.q.0.8.p
= Zkzz Xp= D) Tn=1- X <1, (22)

and so f,, O clco SH(m, n, n).

Conversely, suppose that f,, O clco SH(m, n, n). Setting

n

oy -n®
%.54.9.5.p Y04 0BP |, 0 Xy <1, k=2, .,

1-n

Xk:
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m m—n n
®y.5.4.0.6.p ~ (- 1) nq)V’E”‘f”o"f”f”|b l, 0<Y, <1, k=12, ..
1_rl k| k s ’ ’ ’

Yk=

and X;=1- ZZ):Z X - Z:’zl Y,, and note that, by Theorem 2.2, X; =0.
Consequently, we obtain f,,(z) = 220:1 (7 (2) Xk + gm, (2)Yx ), as required.

Using Corollary 4.3 we have clco SH(m, n, n) = GgH(m, n, n)). Then the statement
of Theorem 4.4 is true for f 0 GgH (m, n, p).

5. Conclusion

In this paper, using the Hadamard product or convolution to define a new differential
operator involving generalized Mittag-Leffler function. Also, we defined new subclass of

univalent functions and established some interesting properties.
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