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Abstract

In this paper, we present results of ω-order preserving partial contraction

mapping creating a continuous time Markov semigroup. We use Markov

and irreducible operators and their integer powers to describe the evolution

of a random system whose state changes at integer times, or whose state

is only inspected at integer times. We concluded that a linear operator

P : `1(X+) → `1(X+) is a Markov operator if its matrix satisfies Px,y > 0

and
∑

x∈X+
Px,y=1 for all y ∈ X.

1 Introduction

In the context of Markov semigroups the relevant norm is the `1 norm. All of the

probabilistic properties of Markov operators are naturally formulated in terms

of this norm, and they need not even be bounded with respect to the `2 norm.

Because Markov semigroup is the study of dynamical systems with stochastic
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perturbations, we can make use of it to obtain a linear transformation of the space

of integrable functions which preserves the set of densities. Suppose X is a Banach

space, Xn ⊆ X is a finite set, T (t) the C0-semigroup, ω − OCPn the ω-order

preserving partial contraction mapping, Mm be a matrix, L(X) be a bounded

linear operator on X, Pn a partial transformation semigroup, ρ(A) a resolvent

set, σ(A) a spectrum of A and A ∈ ω − OCPn is a generator of C0-semigroup.

This paper consists of results of ω-order preserving partial contraction mapping

generating a continuous time Markov semigroup.

Akinyele et al. [1], obtained perturbation results of infinitesimal generator

in semigroup of linear operator. Batty [2], introduced some spectral conditions

for stability of one-parameter semigroup and also in [3] Batty et al., showed

some asymptotic behavior of semigroup of operator. Balakrishnan [4], obtained

an operator calculus for infinitesimal generators of semigroup. Banach [5],

established and introduced the concept of Banach spaces. Chill and Tomilov

[6], deduced some resolvent approach to stability operator semigroup. Davies [7],

established linear operators and their spectra. Engel and Nagel [8], introduced

one-parameter semigroup for linear evolution equations. Räbiger and Wolf [9]

introduced some spectral and asymptotic properties of dominated operator. Rauf

and Akinyele [10], established ω-order preserving partial contraction mapping

and established its properties, also in [11], Rauf et al. presented some results

of stability and spectra properties on semigroup of linear operator. Vrabie [12],

proved some results of C0-semigroup and its applications. Yosida [13], obtained

some results on differentiability and representation of one-parameter semigroup

of linear operators.

2 Preliminaries

Definition 2.1 (C0-semigroup) [8]

A C0-semigroup is a strongly continuous one parameter semigroup of bounded

linear operator on Banach space.
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Definition 2.2 (ω-OCPn) [11]

A transformation α ∈ Pn is called ω-order preserving partial contraction mapping

if ∀x, y ∈ Domα : x ≤ y =⇒ αx ≤ αy and at least one of its transformation

must satisfy αy = y such that T (t+s) = T (t)T (s) whenever t, s > 0 and otherwise

for T (0) = I.

Definition 2.3 (Perturbation) [1]

Let A : D(A) ⊆ X → X be the generator of a strongly continuous semigroup

(T (t))t≥0 and consider a second operator B : D(B) ⊆ X → X such that the sum

A + B generates a strongly continuous semigroup (S(t))t≥0. We say that A is

perturbed by operator B or that B is a perturbation of A.

Definition 2.4 (Analytic Semigroup) [12]

We say that a C0-semigroup {T (t); t ≥ 0} is analytic if there exists 0 < θ ≤ π,

and a mapping S : C̄θ → L(X) such that:

(i) T (t) = S(t) for each t ≥ 0;

(ii) S(z1 + z2) = S(z1)S(z2) for z1, z2 ∈ C̄θ;
(iii) limz1∈C̄θ,z1→0S(z1)x = x for x ∈ X; and

(iv) the mapping z1 → S(z1) is analytic from C̄θ to L(X).

In addition, for each 0 < δ < θ, the mapping z1 → S(z1) is bounded from Cδ
to L(X), then the C0-semigroup {T (t); t ≥ 0} is called analytic and uniformly

bounded.

Definition 2.5 (Markov generator) [7]

Let A : D(A) ⊂ `(X) → `(X) be a linear operator, (X, ‖‖) be a locally compact

normed space. We say that A is a Markov generator if:

(i) D(A) is dense in `(X);

(ii) A fulfills the positive maximum principle; and

(iii) R(λI −A) = `(X) for some λ > 0.

Example 1

2× 2 matrix [Mm(N ∪ {0})]
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Suppose

A =

(
2 0

1 2

)

and let T (t) = etA, then

etA =

(
e2t eI

et e2t

)
.

Example 2

3× 3 matrix [Mm(N ∪ {0})]
Suppose

A =

2 2 3

2 2 2

1 2 2


and let T (t) = etA, then

etA =

e
2t e2t e3t

e2t e2t e2t

et e2t e2t

 .

Example 3

3× 3 matrix [Mm(C)], we have for each λ > 0 such that λ ∈ ρ(A) where ρ(A) is

a resolvent set on X.

Suppose we have

A =

2 2 3

2 2 2

1 2 2


and let T (t) = etAλ , then

etAλ =

e
2tλ e2tλ e3tλ

e2tλ e2tλ e2tλ

etλ e2tλ e2tλ

 .
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3 Main Results

This section presents results of continuous time Markov semigroup generated by

ω-OCPn using Markov and irreducible operators:

Theorem 3.1

Assume A ∈ ω−OCPn is the infinitesimal generator of a continuous time Markov

semigroup. Let AR : `pR(X) → `pR(X) be real and let AC be its complexification,

where 1 6 p <∞. Then AC has the same norm as AR.

Proof:

For p = 1, we have that

‖A‖ = sup
y∈X

{∑
x∈X
|Ax,y|

}
(3.1)

so that an infinite matrix Ax,y determines a bounded operator A on `(X) if and

only if the RHS of (3.1) is finite.

If p > 1, then the inequality

‖AR‖ 6 ‖AC‖

follows directly from the definition of the norm of an operator. To prove the

converse we use the fact that

|a+ ib|p = c−1

∫ π

−π
|a cos θ + b sin θ|pdθ (3.2)

for all a, b ∈ R, where

c :=

∫ π

−π
| cos θ|pdθ. (3.3)

Earthline J. Math. Sci. Vol. 10 No. 1 (2022), 97-108
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If f, g ∈ `pR(X), then

‖AC(f + ig)‖p =
∑
x∈X
|(ARf)(x) + i(ARg)(x)|p

= C−1
∑
x∈X

∫ π

π
|(ARf)(x) cos(θ) + (Apg)(x) sin(θ)|pdθ

= C−1

∫ π

−π

∑
x∈X
|(ARf)(x) cos(θ) + (ARg)(x) sin(θ)|pdθ

= C−1

∫ π

−π
‖AR(f cos(θ) + g sin(θ))‖pdθ

6 ‖AR‖pC−1

∫ π

−π
‖f(x) cos(θ) + g(x) sin ‖pdθ

= ‖AR‖pC−1

∫ π

−π

∑
x∈X
|f(x) cos(θ) + g(x) sin(θ)|pdθ

= ‖AR‖pC−1
∑
x∈X
|f(x) cos(θ) + g(x) sin(θ)|pdθ

= ‖AR‖p
∑
x∈X
|f(x) + ig(x)|p

= ‖AR‖p‖f + ig‖p. (3.4)

Hence, the proof is completed.

Theorem 3.2

Let A : X → X be a positive operator. Then

‖A‖ = sup

{
‖Af‖
‖f‖

: 0 6= f ∈ X+

}
. (3.5)

If A is positive and has norm 1, then

L := {f ∈ X, A ∈ ω −OCPn : Af = f}

is a linear sublattice of X.

Proof:

Suppose f ∈ X, then −|f | 6 f 6 |f | and A > 0 together implies −A(|f |) 6

http://www.earthlinepublishers.com
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A(f) 6 A(|f |), so that

|A(f)| 6 A(|f |).

If c denotes the RHS of (3.5), then one can see immediately that c 6 ‖A‖.

Conversely,

‖Af‖ = ‖|A(f)|‖ 6 ‖A(|f |)‖ 6 c‖|f |‖ = ‖f‖ (3.6)

for all f ∈ X and A ∈ ω −OCPn. Therefore, ‖A‖ 6 c.

If ‖A‖ = 1, and Af = f , then

‖|f |‖ = ‖f‖ = ‖A(f)‖ = ‖|A(f)|‖ 6 ‖A(|f |)‖ 6 ‖|f |‖.

Since the two extreme quantities are equal, we have that if 0 6 f 6 g ∈ X+.

Then

‖f‖ 6 ‖g‖,

and

‖f‖ = ‖g‖ (3.7)

implies

f = g.

We define a linear sublattice L of X to be linear subspace such that f ∈ L implies

|f | ∈ L and implies

A(|f |) = |A(f)| = |f |, (3.8)

so L is a linear sublattice.

Given f ∈ X, we define:

sup(f) := {x ∈ X : f(x) 6= 0}.

Assume A is a positive operator on X, we say that E ⊆ X is an invariant set if

for every f ∈ X+ such that sup(f) ⊆ E, and we have sup(Af) ⊆ E.

This is equivalent to the condition that x ∈ E and (x, y) ∈ E implies y ∈ E.

We say that A is irreducible if the only invariant sets are X and φ. This is

Earthline J. Math. Sci. Vol. 10 No. 1 (2022), 97-108
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equivalent to the operator-theoretic condition that for all x, y ∈ X there exists

n > 0 such that (An)x,y > 0. From a graph-theoretic perspective, irreducibility

demands for all x, y ∈ X there exists a path

w := (y = x0, x1, . . . , xn = x) (3.9)

such that (xr−1, xr) ∈ E for all relevant r, and this achieved the proof.

Theorem 3.3

Suppose A is the infinitesimal generator of a continuous time Markov semigroup.

If A : X → X is a positive, irreducible operator and ‖A‖ = 1, then the subspace

L := {f : Af = f} is of dimension at most 1. If L is one-dimensional, then the

associated eigenfunction satisfies f(x) > 0 for all x ∈ X and A ∈ ω − OCPn.

(Possible after replacing f by −f).

Proof:

Let f ∈ L+ = L ∩X+ and f(y) > 0 and Ax,y > 0, then

f(x) = (Af)(x) =
∑
u∈X

Ax,uf(u) > Ax,yf(y) > 0. (3.10)

This implies that the set E := sup(f) is invariant with respect to A. Using the

irreducibility assumption, we deduce that f ∈ L+ implies sup(f) = X, unless f

vanishes identically. If f ∈ L, then f+ ∈ L because L is a sublattice. It follows

that either f+ = 0 or f− = 0. This establishes that every non-zero f ∈ L is strictly

positive, possibly after multiplying it by −1. If f, g ∈ L+ and λ = f(a)/g(a) for

some choice of a ∈ X, then h = f − λg lies in L and vanishes at a. Hence h is

identically zero, and f, g are linearly dependent. We conclude that dim(L) = 1

and this achieved the proof.

Theorem 3.4

Let A : `1(X) → `1(X) be a bounded linear operator. Then eAt is a positive

operator for all t > 0 if and ony if A(x, y) > 0 for all x 6= y. It is a Markov

operator for all t > 0 if and only if in addition to the above condition, we have

A(y, y) = −
∑
{x:x 6=y}

A(x, y)
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for all y ∈ X and A ∈ ω −OCPn.

Proof:

Assume eAt is positive and x 6= y. Then

A(x, y) = lim
t→0+

t−1〈eAtδyδx〉

and the RHS is non-negative. Conversely, suppose that A(x, y) > 0 for all x 6= y.

We may write A := B+ cl where B > 0 and c := inf{A(x, x) : x ∈ X}. Note that

|c| 6 ‖A‖. It follows that

eAt = ect
∞∑
n=0

tnBn

n!
> 0

for all t > 0. If eAt is positive for all t > 0 and A ∈ ω−OCPn, then it is a Markov

semigroup if and only if

〈eAtf, 1〉 = 〈f, 1〉

for all f ∈ `1(X) and t > 0. Differentiating this at t = 0 implies that 〈Af, 1〉 = 0

for all f ∈ `(x), or equivalently that∑
x∈X

A(x, y) = 0

for all x, y ∈ X and A ∈ ω −OCPn.

Conversely, if this holds, then

〈eAtf, 1〉 =

∞∑
n=0

tn

n!
〈Anf, 1〉 = 〈f, 1〉 (3.11)

for all t ∈ R.

We need to note that a continuous time Markov semigroup Pt := eAt acting

on `1(X) with a bounded generator A is actually defined for all t ∈ C, not just

for t > 0. The Markov property implies that ‖Pt‖ = 1 for all t > 0. However,

for t < 0 the operators Pt are generally not positie. If X is finite, then all of the

eigenvalue of A must satisfy Re(λ) 6 0 because |eλt| 6 ‖eAt‖ = 1 for all t > 0.

Earthline J. Math. Sci. Vol. 10 No. 1 (2022), 97-108
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By evaluating the trace of A one sees that atleast one eigenvalue λ must satisfy

Re(λ) < 0, unless A is identically zero. Since ‖eAt‖ > |eλt|, it follows that the

norm grows exponentially as t→ −∞. Hence, the proof is complete.

Theorem 3.5

If A is the bounded infinitesimal generator of a continuouns time Markov

semigroup Pt acting on `1(X) and Q is a Markov operator acting on `1(X) and c

is a positive constant operator, then A := c(Q − I) is the generator of a Markov

semigroup Pt.

Proof:

First, we have to check that A(x, y) > 0 for all x 6= y and that 〈Af, 1〉 = 0 for all

f ∈ `1(X) and A ∈ ω −OCPn. Suppose the semigroup operator is given by

Pt := ectQ−ctI = e−ct
∞∑
n=0

cntnQn

n!
.

Expressing further, we have

Pt =
∞∑
n=0

a(t, n)Qn

where a(t, n) > 0 for all t, n > 0 and
∑∞

n=o a(t, n) = 1. Thus equation can

be interpreted as describing a particle which makes jumps at random real times

according to the Poisson law a(t, n) and when it jumps it does so from one point

of X to another according to the law of Q. If c := sup{−A(x, x) : x ∈ X}, then

0 6 c 6 ‖A‖. The case c = 0 implies A = 0, for which we can make any choice

of Q. Now suppose that c > 0, it is immediate that B := A + cI is a positive

operator and that

〈Bf, 1〉 = 〈Af, 1〉+ c〈f, 1〉 = c〈f, 1〉 (3.12)

for all `1(X) and A,B ∈ ω − OCPn. Therefore Q := c−1B is a Markov operator

and A = c(Q− I).

If Pt(x, y) > 0 for all x, y ∈ X, A,B ∈ ω −OCPn and t > 0, we say that Pt is

irreducible. Hence, the proof is achieved.
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Conclusion

In this paper, it has been established that ω-order preserving partial contraction

mapping generates a continuous time Markov semigroup using a Markov and

irreducible in Banach space.
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