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Abstract

Over the past years various authors have investigated the famous elementary result
in group theory called Goursat’s lemma for characterizing the subgroups of the
direct product A × B of two groups A,B. Given a homomorphic relation ρ =

(R,A,B) where A and B are groups and R is a subgroup of A × B. What can
one say about the structure of ρ. In 1950 Riguet proved a theorem that allows us
to obtain a characterization of ρ induces by examining the sections of the direct
factors. The purpose of this paper is two-fold. A first and more concrete aim is to
provide a containment relation property between homomorphic relation. Indeed if
ρ, σ are homomorphic relations, we provide necessary and sufficient conditions for
σ ≤ ρ. A second and more abstract aim is to introduce a generalization of some
notions in homological algebra. We define the concepts of θ-exact. We also obtain
some interesting results. We use these results to find a generalization of Lambek
Lemma.

1 Introduction

In 1889 Goursat proved that every subgroup of the direct product of two groups is
determined by an isomorphism between factor groups of subgroups of the given groups.
A like result is here shown for a general class of algebras, by a method due to Riguet [10].
Categories of algebras called Mal’cev varieties were investigated in [7], where it was
pointed out that they should be suitable for developing some basic tools of homological
algebra, thus serving as a non-additive generalization of the usual category of modules.
A Mal’cev variety is a variety of algebras equipped with a ternary operation m(x, y, z)
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satisfying the equations m(x, x, z) = z and m(x, z, z) = x. A famous result by Mal’cev
asserts that this syntactical condition is in fact equivalent to a semantical one, namely that
in the category of algebras any two congruence relations permute. Equivalent conditions
were contained in [10], asserting that every homomorphic relation is difunctional and that
every reflexive homomorphic relation is already a congruence. Examples are modules,
groups, and many more. To presented our notation, we briefly review some notions from
the calculus of binary relations. A binary relation between two sets A and B is a triple
ρ = (R,A,B), where R is a subset of the Cartesian product A × B, called the graph
of ρ. One usually writes xρy to mean (x, y) ∈ R. Relations of special interest are the
identity relation 1A on A, the converse ρ− = (R−, B,A) of ρ and the relative product
ρσ = (RS,A,C) of ρ and σ = (S,B,C). These are defined by

x1Ax
′ ⇔ x = x′

yρ−x ⇔ xρy

xρσz ⇔ xρy and yσz for some y ∈ B.

We write ρ ≤ ρ′ = (R′, A,B) if R is a subset of R′. If ρ = (R,A,A), one says
that ρ is symmetric if ρ− ≤ ρ, ρ is reflexive if 1A ≤ ρ, and transitive if ρρ ≤ ρ. An
equivalence relation satisfies all of these three. A relation ρ = (R,A,B) is difunctional
if ρρ−ρ = ρ and means that

(xρy and xρy′ and x′ρy′)⇒ x′ρy

this implication is illustrated by the following diagram

x′ //

��

y′

x

??

// y

We shall write xρ = {y |xρy}; more generally, for any subset A′ of A, A′ρ = ρA′ =

{y ∈ B|xρy for some x ∈ A′} and Bρ− = ρ−B = {x|xρy for some y ∈ B}. In
particular, A′ρ is the range of ρ, Bρ− is its domain. The following rules are well known
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and will be used freely:

ρ(στ) = (ρσ)τ

ρ1B = ρ = 1Aρ

(ρσ)− = σ−ρ−

A′(ρσ) = (A′ρ)σ

We often take advantage of the first and last of these to write without brackets ρστ and
A′ρσ. Let A,B be groups the neutral element of each group A and B, with slight abuse
of notation, will be written ′ e ′. To generalize the notion of a homomorphism of a group
A into a group B, we call the binary relation ρ = (R,A,B) homomorphic if and only if

(i) eρe,

(ii) if xρy, then x−1ρy−1,

(iii) if xρy and zρt, then xzρyt.

Clearly then, ρ is homomorphic if and only if its graph R is a subgroup of the direct
product A × B. It is easily verified that the identity relation, the converse of a
homomorphic relation and the relative product of two homomorphic relations are all
homomorphic. Our general approach to giving a characterization of containment of
homomorphic relations and to provide applications of it is given .

2 Generalizing Some Theorems of Group Theory

Riguet has used homomorphic relations to proved a theorem which describes the
subgroup structure of a direct product in terms of the sections of the factor groups.
One also verifies for any homomorphic ρ = (R,A,B) that if A′ is a subgroup of A
then A′ρ is a subgroup of B. A homomorphic equivalence relation is usually called a
congruence relation. We shall call subcongruence any homomorphic relation which is
transitive and symmetric without necessarily being reflexive. If κ = (K,A,A) is such
a subcongruence on A, it induces a congruence relation (K,Aκ,Aκ) on its range Aκ.
The factor group of Aκ modulo κ is usually written Aκ/κ, we shall call it a subfactor of
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A. We denote by Con(A) the set of congruence of A. We define κ̄ = (K̄, A,Aκ/κ)

by (2, 1) aκ̄(a′κ) iff aκa′, so that a aκ̄ = aκ. A simple calculation shows that
(2, 2) κ̄κ̄− = κ, κ̄−κ̄ = 1Aκ/κ, whence (2.3) κ̄−κκ̄ = 1Aκ/κ. Note that κ̄ induces
the well-known natural homomorphism (K̄, Aκ,Aκ/κ).

Theorem 2.1. (Riguet) If ρ = (R,A1, A2) is a difunctional homomorphic relation
(between two groups), then

(i) κ1 = ρρ− is a subcongruence of A1 with range A2ρ
−,

(ii) κ2 = ρ−ρ is a subcongruence of A2 with range A1ρ,

(iii) ρ induces an isomorphism µ between subfactors
A1κ1
κ1

and
A2κ2
κ2

such that

(aκ1) = µ(bκ2) if and only if aρb.

Conversely, every isomorphism between subfactors A1κ1/κ1 and A2κ2/κ2 of (groups)
A1 and A2 respectively are isomorphic if there exists a difunctional homomorphic
relation ρ = (R,A1, A2) such that ρρ− = κ1 and ρ−ρ = κ2.

Theorem 2.1 give Goursat’s characterization of the subgroups of the direct product of
two groups, since all such subgroups are graphs of homomorphic relations between the
groups.

Example 2.2. Let ρ = (R,S2, S2) homomorphic relations. We want to describe all
relation of ρ. It suffices to determine all subgroups of S2 × S2. First, the subgroups
of S2 are 〈(1)〉,〈(12)〉. Consider the subnormal quotient groups A/B where B � A ⊆
S2. If |A/B| = 1, one has 〈(1)〉/〈(1)〉; 〈(12)〉/〈(12)〉. It has only the identity maps
between the 2 different quotients; so there are 4 different isomorphisms θ : A/B →
C/D yielding the 4 different subproducts 〈(1)〉 × 〈(1)〉, V1 = 〈(1)〉 × S2, V2 = S2 ×
〈(1)〉 and S2 × S2. If |A/B| = 2, one has 〈(12)〉/〈(1)〉; therefore the isomorphism
〈(12)〉/〈(1)〉 → 〈(12)〉/〈(1)〉; gives the subgroup V3 =

{(
(1), (1)

)
,
(
(12), (12)

)}
. Let

ρ0 = ({1, 1}, S2, S2), ρ1 = (V1, S2, S2), ρ2 = (V2, S2, S2), ρ3 = (V3, S2, S2), ρ =

(S2 × S2, S2, S2).
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ρ

ρ1 ρ3 ρ2

ρ0

Hasse diagram of ρ

Definition 2.3. Given homomorphic relation ρ = (R,A1, A2), we say that the
corresponding Q(ρ) = (A1κ1, κ1, A2κ2, κ2, µ) of Theorem 2.1 is the Goursat quintuple
for ρ .

Let V be a group. We call ρ = (θ : A1κ1/κ1 → A2κ2/κ2) a V -relation of ρ if V
is its Goursat type, i.e., if Aiκi/κi ∼= V, i = 1, 2 and we denote by Sρ(V ) the set
of all V -relation of ρ and MV the set of all isomorphis θi : Aiκi/κi → V . Given
morphisms θi : Aiκi/κi → V in MV , i = 1, 2, composition yields an isomorphism
θ = θ1θ

−1
2 : A1κ1/κ1 → A2κ2/κ2. Hence there is a map Π : MV ×MV → Sρ(V )

defined by

Π(θ1, θ2) = θ1θ
−1
2 .

Let V, V ′ be groups. We now describe and analyze the partial order of relation of ρ =

(L,A1, A2) in terms of pairs of morphisms.

Proposition 2.4. Let (θi : Aiκi/κi → V ) ∈MV and (θ′i : Aiκ
′
i/κ
′
i → V ′) ∈MV ′ , i =

1, 2, be morphisms, let θ = Π(θ1, θ2), θ
′ = Π(θ′1, θ

′
2) with corresponding relation ρ =

(L,A1, A2), ρ
′ = (L′, A1, A2). Then ρ′ 6 ρ if and only if

(i) (Aiκ
′
i, κ
′
i) 6 (Aiκi, κi) and

(ii) λ1 = λ2 where λi = θiϕi(θ
′
i)
−1, and ϕi : Aiκ

′
i/κ
′
i → Aiκi/κi is the

homomorphism defined by (aκ′i)
ϕi = aκi, for a ∈ Aiκ′i, i = 1, 2.
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A1κ1/κ1
θ1 //

OO
ϕ1

VOO

λ1

A1κ
′
1/κ
′
1

θ′1 // V ′

V oo
θ2

OO

λ2

A2κ2/κ2OO
ϕ2

V ′ oo
θ′2
A2κ

′
2/κ
′
2

Proof. We define ρ′ and ρ as follows

a′1ρ
′a′2 ⇔ θ′1(a

′
1κ
′
1) = θ′2(a

′
2κ
′
2),

and
a1ρa2 ⇔ θ1(a1κ1) = θ2(a2κ2).

Then ρ′ ≤ ρ if and only if (Aiκ
′
i, κ
′
i) 6 (Aiκi, κi), i = 1, 2, and, for a1ρ′a2 we have

θ1(a1κ1) = θ2(a2κ2). But if a1ρ′a2, then

θi(aiκi) = θi(ϕi(aiκ
′
i)) = λi(θ

′
i(aiκ

′
i)).

So θ1(a1κ1) = θ2(a2κ2) if and only if λ1 = λ2. �

Corollary 2.5. With the notation of Proposition 2.4, ρ 6 ρ′ if and only if

(i) (Aiκ
′
i, κ
′
i) 6 (Aiκi, κi),

(ii) ϕ1θ = θ′ϕ2.

3 Generalization to Other Algebraic Systems

By an n-ary operation fn on a set A is understood a mapping which assigns to each
n-tuple of elements of A a single element of A, n being some finite non-negative integer.
In particular, a 0-ary operation is a constant. Let F be a set of operation symbols with
prescribed subscripts. An algebra, in the sense of Birkhoff ([7]), is a representation of
such a set of symbols as n-ary operations on a set A, and may be denoted by A. If A′ is a
subset of A closed under all the operations in F , the induced representation A′ is called
a subalgebra of A. The Cartesian product A × B of two similar algebras is turned into
another algebra of the same kind, called the direct product of A and B. For all algebra
variety, the following statements are equivalent: [7]:
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(M1) there exists ternary operation m(x, y, z) satisfying the equation : m(x, y, y) = x

and m(y, y, z) = z.

(M2) If R and S are congruence relations on any algebra, then RS = RS.

(M3) If ρ is any homomorphic relation between two algebras : ρρ−ρ = ρ.

An algebraic category satisfying any of these equivalent conditions is called a Mal’cev
variety.

Example 3.1. i) Groups are Mal’cev variety with m(x, y, z) = xy−1z.

ii) Rings, Modules and Boolean algebras are Mal’cev varieties.

iii) Heyting algebras are Mal’cev variety where m can be given by:

m(x, y, z) =
(
(z → y)→ x

)
∧
(
(x→ y)→ z

)
The isomorphism theorem due to J. Lambek may be stated as follows:

Theorem 3.2. [11](Goursat’s lemma)
Every homomorphic relation ρ = (R,A1, A2) between two algebra in a Mal’cev variety
gives rise to an isomorphism between factors of subalgebras of A1 and A2 as follows:

A1ρ

ρ−ρ
∼=
A2ρ

−

ρρ−

as every isomorphism µ : A′1/θ
∼= A′2/θ

′ where θ and θ′ are congruence relations on
subalgebra A′1 of A1 and A′2 of A2 respectively, gives rise to homomorphic relation
ρ from A1 to A2 where we put aρb if and only if θ(a) = µθ′(b) and θ(a), θ(b) are
equivalence classes.

Example 3.3. A ring is an algebra R = 〈R,+, .,−, 0〉 where + and . are binary, − is
unary and 0 is nullary operations. Consider ring R = Z4 × Z4 we want to determine all
subrings of R. It suffices to determine all subgroups of Z4 × Z4. First, the subgroups
of Z4 × Z4 are 〈0〉,〈2〉 and Z4. Consider the subnormal quotient groups A/B where
B � A ⊆ Z4. If |A/B| = 1, one has 〈0〉/〈0〉, 〈2〉/〈2〉, Z4/Z4. It has only the identity
maps between the 3 different quotients;so there are 9 different isomorphisms θ : A/B →
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C/D yielding the 9 different subproducts such that H1 = Z4 × Z4, with θ1 : Z4/Z4 →
Z4/Z4, [0, 1, 2, 3] 7→ [0, 1, 2, 3] similarly we have
H2 = {(0, 0), (1, 0), (2, 0), (0, 2), (1, 2), (2, 2), (3, 0), (3, 2)},
H3 = {(0, 0), (1, 0), (2, 0), (3, 0)},
H4 = {(0, 0), (0, 1), (2, 0), (2, 1), (0, 2), (2, 2), (0, 3), (2, 3)},
H5 = {(0, 0), (2, 0), (0, 2), (2, 2)},
H6 = {(0, 0), (2, 0)},
H7 = {(0, 0), (0, 1), (0, 2), (0, 3)},
H8 = {(0, 0), (0, 2)},
H9 = {(0, 0)}.
If |A/B| = 2, one has 〈2〉/〈0〉, Z4/〈2〉, there are 4 different subproducts such that
H10 = {(0, 0), (2, 0), (0, 2), (2, 2), (1, 1), (1, 3), (3, 1), (3, 3)},
H11 = {(0, 0), (0, 2), (2, 1), (2, 3)},
H12 = {(0, 0), (0, 2), (2, 1), (2, 3)},
H13 = {(0, 0), (2, 2)}.
If |A/B| = 4, one has Z4/〈0〉, there are 2 different subproducts such that
H14 = {(0, 0), (1, 1), (2, 2), (3, 3)},
H15 = {(0, 0), (1, 3), (2, 2), (3, 1)}.
The number of subring of R is N (s)(22, 22) = 12 (see [13] for instant) and (0, 3) =

(2, 1)(2, 3) /∈ H11, (3, 3) = (1, 3)(3, 1) /∈ H15,(0, 3) = (2, 1)(2, 3) /∈ H12. This
allows us to determine all subring of Z4 × Z4 it is (Hi)1≤i≤14 with i 6= 11, 12, 15.
One has (Hi)1≤i≤9, H13 ideals of R and H1, H10, H14 are unitary subrings. Let ρi =

(Hi,Z4,Z4).
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ρ

ρ2 ρ10 ρ4

ρ3 ρ11 ρ15 ρ5 ρ14 ρ12 ρ7

ρ6 ρ13 ρ8

ρ9

Hasse diagram of ρ

Now we shall recall a generalization of Lambek Lemma for module theory due to B.
Davvaz [8].

Lemma 3.4. (A Generalization of Lambek Lemma). Let

A′
α1 //

ψ
��

A

ϕ

��

α2 // A′′

θ
��

B′
β1
// B

β2
// B′′

be a commutative diagram such that the first row is U -exact (Imα1 = α−12 (U)) and the
second row is U ′-exact (Imβ1 = β−12 (U ′)). Then ϕ induces an isomorphism

Imϕ ∩ Imβ1
Imϕα1

∼=
(θα2)

−1(U ′)

α−12 (U) + ϕ−1(0)
.

Definition 3.5. A sequence of algebras and homomorphisms

A
λ // B

µ // C

is said to be θ-exact (where θ ∈ Con(C) ) at B if Imλ = kerθ µ = µ−θµ.

Let us consider the following diagram

A
λ1 //
λ2
//

α1

��
α2

��

B

β
��

µ // C

γ1
��

γ2
��

D
λ // E

µ1 //
µ2
// F
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or if we prefer:

A+A
[λ1,λ2] //

[α1,α2]
��

B
µ //

β
��

C

<γ1,γ2>
��

D
λ
// E

<µ1,µ2>
// F × F

and assume that β[λ1, λ2] = λ[α1, α2] (that is, βλi = λαi, i = 1, 2) and <γ1, γ2 >

µ =< µ1, µ2 > β, (that is, γiµ = µiβ, i = 1, 2). Then

Im(λ1 − λ2) = kerθ µ, Imλ = kerθ′(µ1 − µ2).

Here
Imλ = {λd|d ∈ D}

is the usual image of λ and kerθ µ = µ−θµ ; µµ− = 1, with the graph

{(b1, b2) ∈ B ×B|(µb1, µb2) ∈ θ}

and kerθ′(µ1 − µ2) = {e ∈ E|(µ1e, µ2e) ∈ θ′} we also write Im(λ1 − λ2) = λ1λ
−
2 for

the relation B with graph
{(λ1a, λ2a)|a ∈ A}.

Proposition 3.6. In the diagram as above, if the first row is θ-exact and the second row
is θ′-exact, in malcev variety. Let µµ− = 1, then

Im(B → E) ∩ Im(D → E)

Im(A⇒ E)
∼=

kerθ′(B → F )

Kerθ(B → C) ∨Ker(B → E)

where the congruence relation in the denominator of right hand side is assumed to be
restricted to algebra in the numerator.
Here ∨ denotes the join in lattice of congruence relation on B.

Proof. We consider the homomorphic relation ρ from B to E defined as follows:

eρb⇔ ∃b′ ∈ B(e = βb′ ∧ (µb′, µb) ∈ θ ∧ (µ1e, µ2e) ∈ θ′).

Note that equation (µ1e, µ2e) ∈ θ′ on the right can be replaced by (µ1βb, µ2βb) ∈ θ′,
since

µie = µiβb
′ = γiµb

′ = γiµb = µiβb, (i = 1, 2).
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We now calculate:

e ∈ ρρ−E = ρB ⇔ ∃b, b′ ∈ B(e = βb′ ∧ (µb′, µb) ∈ θ ∧ (µ1e, µ2e) ∈ θ′)

⇔ ∃b′ ∈ B(e = βb′ ∧ e ∈ kerθ′(µ1 − µ2))

⇔ e ∈ Imβ ∧ e ∈ Imλ;

eρρ−e′ ⇔ eβµ−θµµ−θµβ−e′ ∧ (µ1e, µ2e) ∈ θ′ ∧ (µ1e
′, µ2e

′) ∈ θ′

⇔ eβµ−θµβ−e′ ∧ e, e′ ∈ kerθ′(µ1 − µ2) since µµ− = 1

⇔ eβIm(λ1 − λ2)β−e′ ∧ e, e′ ∈ Imλ

⇔ eIm(βλ1 − βλ2)e′.

Note that

βIm(λ1 − λ2)β− = βλ2λ
−
2 β
−

= Im(βλ1 − βλ2)

= Im(λα1 − λα2)

= λα1α
−
2 λ
−

so that the condition e, e′ ∈ Imλ is automatically fulfilled.

b ∈ ρ−ρB = ρ−E ⇔ ∃e ∈ E,∃b′ ∈ B(e = βb′ ∧ (µb′, µb) ∈ θ ∧

(µ1βb, µ2βb) ∈ θ′)

⇔ (µ1βb, µ2βb) ∈ θ′

⇔ b ∈ kerθ′(µ1β − µ2β)

bρ−ρb′ ⇔ bµ−θµβ−βµ−θµb′ ∧ (µ1βb, µ2β) ∈ θ′ ∧ (µ1βb
′, µ2βb

′) ∈ θ′

⇔ b(kerθ µ ∨ kerβ)b′ ∧ b, b′ ∈ kerθ′(µ1β − µ2β).

The last step in the proof uses the fact that the congruence relation µ−θµ and β−β on B
commute and that their relative product is their join in the lattice of congruence relations
on B.

If Im1 and ker 2 denote the two sides of the isomorphism in Proposition 3.6, we have
Im1 ∼= ker 2, use Theorem 3.2. �
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