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Abstract

Over the past years various authors have investigated the famous elementary result
in group theory called Goursat’s lemma for characterizing the subgroups of the
direct product A x B of two groups A, B. Given a homomorphic relation p =
(R, A, B) where A and B are groups and R is a subgroup of A x B. What can
one say about the structure of p. In 1950 Riguet proved a theorem that allows us
to obtain a characterization of p induces by examining the sections of the direct
factors. The purpose of this paper is two-fold. A first and more concrete aim is to
provide a containment relation property between homomorphic relation. Indeed if
p, o are homomorphic relations, we provide necessary and sufficient conditions for
o < p. A second and more abstract aim is to introduce a generalization of some
notions in homological algebra. We define the concepts of #-exact. We also obtain
some interesting results. We use these results to find a generalization of Lambek

Lemma.

1 Introduction

In 1889 Goursat proved that every subgroup of the direct product of two groups is
determined by an isomorphism between factor groups of subgroups of the given groups.
A like result is here shown for a general class of algebras, by a method due to Riguet [[10].
Categories of algebras called Mal’cev varieties were investigated in [7], where it was
pointed out that they should be suitable for developing some basic tools of homological
algebra, thus serving as a non-additive generalization of the usual category of modules.
A Mal’cev variety is a variety of algebras equipped with a ternary operation m(x, y, z)
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satisfying the equations m(x, x, z) = z and m(x, z, z) = . A famous result by Mal’cev
asserts that this syntactical condition is in fact equivalent to a semantical one, namely that
in the category of algebras any two congruence relations permute. Equivalent conditions
were contained in [[10]], asserting that every homomorphic relation is difunctional and that
every reflexive homomorphic relation is already a congruence. Examples are modules,
groups, and many more. To presented our notation, we briefly review some notions from
the calculus of binary relations. A binary relation between two sets A and B is a triple
p = (R, A, B), where R is a subset of the Cartesian product A x B, called the graph
of p. One usually writes xpy to mean (z,y) € R. Relations of special interest are the
identity relation 14 on A, the converse p~ = (R™, B, A) of p and the relative product
po = (RS, A,C)of pand 0 = (5, B, C). These are defined by

xlar & =2

yp S Tpy
xpoz << xpyandyoz for some y € B.

We write p < p/ = (R, A, B) if R is a subset of R'. If p = (R, A, A), one says
that p is symmetric if p~ < p, p is reflexive if 14 < p, and transitive if pp < p. An

equivalence relation satisfies all of these three. A relation p = (R, A, B) is difunctional

if pp~p = p and means that
(xpy and xpy’ and 2’ py’) = ' py

this implication is illustrated by the following diagram

We shall write 2p = {y |zpy}; more generally, for any subset A’ of A, A’p = pA’ =
{y € Blzpy forsome x € A’} and Bp~ = p~ B = {z|xpy forsome y € B}. In
particular, A’p is the range of p, Bp~ is its domain. The following rules are well known
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and will be used freely:

plor) = (po)r
plp = p=1lap
(po)~ = o p-

Alpo) = (Ap)o

We often take advantage of the first and last of these to write without brackets poT and
A’po. Let A, B be groups the neutral element of each group A and B, with slight abuse
of notation, will be written’ e ’. To generalize the notion of a homomorphism of a group
A into a group B, we call the binary relation p = (R, A, B) homomorphic if and only if

(i) epe,

(ii) if zpy, then 2~ py =L,

(#i7) if xpy and zpt, then zzpyt.

Clearly then, p is homomorphic if and only if its graph R is a subgroup of the direct
product A x B. Tt is easily verified that the identity relation, the converse of a
homomorphic relation and the relative product of two homomorphic relations are all
homomorphic. Our general approach to giving a characterization of containment of

homomorphic relations and to provide applications of it is given .

2 Generalizing Some Theorems of Group Theory

Riguet has used homomorphic relations to proved a theorem which describes the
subgroup structure of a direct product in terms of the sections of the factor groups.
One also verifies for any homomorphic p = (R, A, B) that if A’ is a subgroup of A
then A’p is a subgroup of B. A homomorphic equivalence relation is usually called a
congruence relation. We shall call subcongruence any homomorphic relation which is
transitive and symmetric without necessarily being reflexive. If k = (K, A, A) is such
a subcongruence on A, it induces a congruence relation (K, Ak, Ax) on its range Ax.
The factor group of Ax modulo « is usually written Ax/k, we shall call it a subfactor of
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A. We denote by Con(A) the set of congruence of A. We define & = (K, A, Ax/k)
by (2,1) ak(d’k) iff aka’, so that a ak = ak. A simple calculation shows that
(2,2) kKK~ = K,k Kk = lu,/,, whence (2.3) K"Kk = 1y,/,. Note that k induces

the well-known natural homomorphism (K, Ak, Ax/k).

Theorem 2.1. (Riguet) If p = (R, Ay, As) is a difunctional homomorphic relation
(between two groups), then

(i) K1 = pp~ is a subcongruence of Ay with range Asp~,

(i) ko = p~pis a subcongruence of Az with range Aip,

Arky Aska
and
K1 K2

such that

(791) p induces an isomorphism p between subfactors

(ak1) = u(bke) if and only if apb.

Conversely, every isomorphism between subfactors A1k1/k1 and Aska /Ko of (groups)
Ay and As respectively are isomorphic if there exists a difunctional homomorphic

relation p = (R, A1, A2) such that pp~ = k1 and p~ p = Ka.

Theorem 2.1 give Goursat’s characterization of the subgroups of the direct product of
two groups, since all such subgroups are graphs of homomorphic relations between the

groups.

Example 2.2. Let p = (R, S2,S2) homomorphic relations. We want to describe all
relation of p. It suffices to determine all subgroups of Sy x Ss. First, the subgroups
of Sy are ((1)),((12)). Consider the subnormal quotient groups A/B where B < A C
Sy. If JA/B| = 1, one has ((1))/((1)); ((12))/((12)). It has only the identity maps
between the 2 different quotients; so there are 4 different isomorphisms 6 : A/B —
C'/ D yielding the 4 different subproducts ((1)) x ((1)), Vi = ((1)) x Sa2,Va = Sy x
((1)) and Sy x Sa. If |A/B| = 2, one has ((12))/((1)); therefore the isomorphism
(12))/4(1)) — ((12))/{(1)): gives the subgroup Vs = {((1), (1)), ((12), (12)) }. Let
po = ({1,1},82,52),p1 = (V1,52,52),p2 = (Va,52,52), p3 = (V3,52,52),p =
(S2 x Sa,82,52).
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N
N

P1 2

Hasse diagram of p

Definition 2.3. Given homomorphic relation p = (R, A;, A2), we say that the
corresponding Q(p) = (A1k1, k1, Aaka, Ko, 1) of Theorem 2.1]is the Goursat quintuple
for p.

Let V be a group. We call p = (0 : Ajr1/k1 — Agka/kK2) a V-relation of p if V'
is its Goursat type, i.e., if Ajx;/k; = V,i = 1,2 and we denote by S,(V') the set
of all V-relation of p and My the set of all isomorphis 6; : A;x;/k; — V. Given
morphisms 6; : A;x;/k; — V in My,i = 1,2, composition yields an isomorphism
0 = 9102_1 : Aik1/k1 — Aska/ko. Hence there is a map IT : My x My — S,(V)
defined by

T1(0y,02) = 0105

Let V, V' be groups. We now describe and analyze the partial order of relation of p =
(L, A1, Ag) in terms of pairs of morphisms.

Proposition 2.4. Let (0; : Aiki/k; = V) € My and (0) : Aix /K, — V') € My, i =
1,2, be morphisms, let 0 = 11(61,02),0" = I1(0}, 05) with corresponding relation p =
(L, A1, As),p = (L', Ay, As). Then p’ < pif and only if

(1) (Airl, kL) < (Aiki, ki) and

277

(i1) M1 = Ao where N; = 0;0i(0))7, and p; : Airl/K. — Aiki/ki is the
homomorphism defined by (ak})?" = ak;, fora € Ak}, i =1,2.
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Allﬂ//ﬂbv V<7€2A2:‘€2/"€2

gplT TAI )\QT TSOQ
04 04

ARy K =V V! <2 Agkh /Kl
Proof. We define p’ and p as follows

aip'ay < 01(a1k)) = O5(azns),
and

alpag < 91 (allﬂ) = 92(@2%2).

Then p' < p if and only if (A4;x}, k;) < (Aiki, ki), @ = 1,2, and, for a;p’az we have
01(a1k1) = O2(azkz). Butif ajp’ag, then

Oi(airi) = 0i(wilair;)) = Ni(0;(airg)).

So 01 (alm) = 92(@2/‘62) if and Ol’lly if )\1 = )\2. |

Corollary 2.5. With the notation of Proposition p < p if and only if

(1) (Air, k) < (Aiki, Ki),

177

(i1) @10 = 0'ps.

3 Generalization to Other Algebraic Systems

By an n-ary operation f,, on a set A is understood a mapping which assigns to each
n-tuple of elements of A a single element of A, n being some finite non-negative integer.
In particular, a O-ary operation is a constant. Let F' be a set of operation symbols with
prescribed subscripts. An algebra, in the sense of Birkhoff ([7]), is a representation of
such a set of symbols as n-ary operations on a set A, and may be denoted by A. If A’ is a
subset of A closed under all the operations in F, the induced representation A’ is called
a subalgebra of A. The Cartesian product A x B of two similar algebras is turned into
another algebra of the same kind, called the direct product of A and B. For all algebra
variety, the following statements are equivalent: [7]:
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(M1) there exists ternary operation m(x,y, z) satisfying the equation : m(z,y,y) = x
and m(y,y, z) = z.

(M2) If R and S are congruence relations on any algebra, then RS = RS.
(M3) 1If p is any homomorphic relation between two algebras : pp~p = p.

An algebraic category satisfying any of these equivalent conditions is called a Mal’cev
variety.

Example 3.1. i) Groups are Mal’cev variety with m(x,y,2) = zy ‘2.

i1) Rings, Modules and Boolean algebras are Mal’cev varieties.
ii1) Heyting algebras are Mal’cev variety where m can be given by:
m(x,y,z) = ((z —y) = x) A ((x —y) — z)
The isomorphism theorem due to J. Lambek may be stated as follows:

Theorem 3.2. [/1|](Goursat’s lemma)
Every homomorphic relation p = (R, A1, Aa) between two algebra in a Mal’cev variety

gives rise to an isomorphism between factors of subalgebras of A1 and As as follows:

Ao Aoy

PP pp”
as every isomorphism p : Ay /0 = AL /0" where 6 and 0" are congruence relations on
subalgebra A of A1 and Al of As respectively, gives rise to homomorphic relation
p from Ay to Az where we put apb if and only if 0(a) = p6'(b) and 6(a),0(b) are

equivalence classes.

Example 3.3. A ring is an algebra R = (R, +,.,—,0) where + and . are binary, — is
unary and 0 is nullary operations. Consider ring R = Z4 X Z4 we want to determine all
subrings of R. It suffices to determine all subgroups of Z4 x Z4. First, the subgroups
of Z4 x Zy4 are (0),(2) and Z4. Consider the subnormal quotient groups A/B where
B <A C Zy If|A/B| = 1, one has (0)/(0), (2)/(2), Z4/Z4. It has only the identity
maps between the 3 different quotients;so there are 9 different isomorphisms § : A/B —

Earthline J. Math. Sci. Vol. 10 No. 1 (2022), 169-181



176 Brice Réné Amougou Mbarga

C'/ D yielding the 9 different subproducts such that H; = Z4 X Zy, with 01 : Z4/Z4 —
Z4/74,10,1,2,3] — [0,1,2, 3] similarly we have

Hy = {(0,0),(1,0),(2,0),(0,2),(1,2),(2,2),(3,0),(3,2)},
Hz ={(0,0),(1,0),(2,0), (3,0)},
H4 ={(0,0),(0,1),(2,0),(2,1),(0,2),(2,2),(0,3), (2,3)},
={(0,0),(2,0),(0,2),(2,2)},

He = {(0,0),(2,0)},

Hz ={(0,0),(0,1),(0,2),(0,3)},

Hg = {(0,0),(0,2)},

Hg = {(0,0)}.
If |A/B| = 2, one has (2)/(0), Z4/(2), there are 4 different subproducts such that
Hip = {(0,0), (2,0), (0,2), (2,2), (1. 1), (1,3), (3, 1), (3,3)}
Hy = {(07 0),(0,2),(2,1), (2, 3)}7
Hip = {(0,0),(0,2),(2,1),(2,3)},
Hy3 ={(0,0),(2,2)}.

If |A/B| = 4, one has Z4/(0), there are 2 different subproducts such that

Hia = {(0,0),(1,1),(2,2),(3,3)},

His = {(0,0),(1,3),(2,2), (3, 1)}.

The number of subring of R is N(*)(22,22) = 12 (see [13] for instant) and (0,3) =
(2,1)(2,3) ¢ Hiy,(3,3) = (1,3)(3,1) ¢ Hy5.(0,3) = (2,1)(2,3) ¢ Hy,. This
allows us to determine all subring of Zy x Z4 it is (H;)1<ij<14 With ¢ % 11,12,15.
One has (H;)1<i<9, H13 ideals of R and Hy, Hio, H14 are unitary subrings. Let p; =
(Hi7 Ly, Z4).
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Hasse diagram of p

Now we shall recall a generalization of Lambek Lemma for module theory due to B.
Davvaz [8]].

Lemma 3.4. (A Generalization of Lambek Lemma). Let

A2 g

R

B/4>B4>B”

1 B2
be a commutative diagram such that the first row is U-exact (Imay = ay ' (U)) and the
second row is U'-exact (Imfy = By (U")). Then ¢ induces an isomorphism
ImpnImpy ., (Bag)” ' (U')
Imgor—— ay (U) +¢71(0)

Definition 3.5. A sequence of algebras and homomorphisms

A2.pB_t.C
is said to be f-exact (where § € Con(C) ) at B if ImA = kerg u = p~ 6p.

Let us consider the following diagram

it

B C

A
Ocz\uoq B Y2 i%

D E F

guz

ly
|
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or if we prefer:

AL
A A g m o
[almll Bi l<71,72>
D E FxF
A <p1,p2>

and assume that B[\, A2] = Aoy, ag] (that is, SN\, = Aay,i = 1,2) and <v1,72 >
w=< 1, o > B, (thatis, v;u = p;B8,¢ = 1,2). Then

Im(A1 — Ao) = kerg i, Im\ = kergr (g — p2).

Here
Im\ ={\d|d € D}

is the usual image of A and kerg u = p~0p 5 pup~ = 1, with the graph
{(bl,bg) € B x B|(ub1,,ub2) S 9}

and kerg/ (1 — p2) = {e € El(ue, poe) € 0'} we also write Im(A; — A2) = M\, for
the relation B with graph
{(A\1a, A2a)|a € A}.

Proposition 3.6. In the diagram as above, if the first row is 0-exact and the second row

is 0'-exact, in malcev variety. Let pu~ = 1, then
Im(B— EYNIm(D — FE) ~ kerg/(B — F)
Im(A= E) ~ Kerg(B— C)V Ker(B — E)

where the congruence relation in the denominator of right hand side is assumed to be
restricted to algebra in the numerator.

Here \/ denotes the join in lattice of congruence relation on B.
Proof. We consider the homomorphic relation p from B to E' defined as follows:
epb < ' € B(e = B A (ub', ub) € 0 A (ure, poe) € 6').

Note that equation (u1e, puge) € €' on the right can be replaced by (p18b, p23b) € ',

since

pie = i = yipb' = yipb = pifb, (i = 1,2).

http://www.earthlinepublishers.com



Homomorphic Relations and Goursat Lemma 179

We now calculate:

ecpp E=pB & 3V € Ble= BV A(ub,ub) € 0A (e, uze) € 6')
b’ € B(e = b Ne € kerg (1 — p2))
ecImpBAeeclmk

eBu~Oup~ 0uB=e A (e, uze) € 0 A (1€, pge’) € ¢
eBu~0uB e Ne,e € kerg (1 — p2) since pu~ =1
eBIm(A1 — \2)B~ € Ae, e € ImA

elm(BA — BArz)e’.

epp” €

t ¢ 0T O

Note that

BIm(A — A2)B~ = B, B
= Im(BM — BA2)
= Im(Aay — Aaz)

= darog A~
so that the condition e, ¢’ € I'm is automatically fulfilled.

bep pB=p E & Jec E, T € Ble= BV A(ub,ub) €0 A
(118b, p23b) € 6')
& (1aBb, o) € 0'
& bekerg (1B — p2p)

bp~pb & bumOuB BuOub’ A (u18b, paB) € 0" A (1B, paBb') € 0
& bkerg p Vker BV A b, € kerg: (1118 — paf3).

The last step in the proof uses the fact that the congruence relation =6y and 3~ 5 on B
commute and that their relative product is their join in the lattice of congruence relations
on B.

If I'm1 and ker 2 denote the two sides of the isomorphism in Proposition we have
Iml = ker 2, use Theorem 3.2} O
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