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Abstract

By making use of q-derivative and q-integral operators, we define a class of

analytic and bi-univalent functions in the unit disk |z| < 1. Subsequently, we

investigate some properties such as some early coefficient estimates and then

obtain the Fekete-Szegö inequality for both real and complex parameters.

Further, some interesting corollaries are discussed.

1 Introduction

In what follows, let A represent the class of analytic functions normalized by

the conditions f(0) = 0 = f ′(0) − 1 so that f(z) is of the Maclaurin series

representation:

f(z) = z +
∞∑
m=2

amz
m (|z| < 1). (1.1)

Also let S represent the subset of A which is the class of analytic and univalent

functions in |z| < 1. In view of function class S, the Koebe one-quarter theorem

is a familiar theorem that asserts that the range of every function f ∈ S covers

the disk

D = {w : |w| < 0.25} ⊂ f(|z| < 1).

For this reason, f ∈ S of the form (1.1) has the inverse function f−1 such that

f−1(f(z)) = z (|z| < 1)
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and

f(f−1(w)) = w (|w| < r0(f), r0(f) = 0.25)

where by simple calculation we get

F(w) = f−1(w) = w− a2w2 + (2a22 − a3)w3 − (5a32 − 5a2a3 + a4)w
4 + · · · . (1.2)

A function f ∈ S is said to be bi-univalent if both f(z) and F(w) are univalent

in |z| < 1. We represent by Ξ the class of analytic and bi-univalent functions in

|z| < 1.

We thus remark that class Ξ is a non-empty set because the functions:

f(z) = z, f(z) = z(1− z)−1, f(z) = − log(1− z),

and more are in Ξ. Note that the familiar functions:

f(z) = z(1− z)−2, f(θ; z) = z(1− eiθz)−2 and f(z) = z(1− z2)−1

that are in class S are non-members of Ξ.

Historically, Lewin [18] presented the class Ξ of A and established that every

function f ∈ Ξ has coefficient estimate |a2| < 1.51. Other established estimates

for f ∈ Ξ that improved that of Lewin [18] are |a2| 5
√

2, |a2| 5 4/3 and

|a2| 5 1.485 in [6, 24, 33] respectively. The estimates |am| (m = {3, 4, . . .}) are

presumed yet unsolved. We refer interested readers to the works in [6, 7, 9, 15,

21, 22, 25, 26, 27, 29, 34, 35] for more information on history, properties and

definitions of some existing subclasses of Ξ.

In recent times, the concept of q-calculus (q-difference, q-integral, q-series and

q-numbers) has attracted the attention of theorists of geometric functions. The

concept of q-analysis was first introduced in the works of Jackson [11, 12, 13]

and since then many researchers (such as in [7, 15, 16, 17, 25, 32]) have used

it in various ways to define and establish some properties of many classes of

functions in Geometric Function Theory. In particular, Aral et al. [4], Annaby

and Mansour [3], Kac and Cheung [14] and Srivastava [28] extensively discussed

some applications of q-calculus in so many areas of (q-)analysis.
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Definition 1.1 ([11, 12]). For function f(z) ∈ A of the form (1.1) and q ∈ (0, 1),

the q-derivative operator Dq : A −→ A of f(z) is defined by

Dqf(z) = f(z)−f(qz)
z(1−q) = 1 +

∞∑
m=2

[m]qamz
m−1 (z 6= 0)

Dqf(0) = f ′(0) = 1 (z = 0) if it exists

D2
qf(z) = Dq(Dqf(z)) =

∞∑
m=2

[m− 1]q[m]qamz
m−2

where [m]q = 1−qm
1−q = 1 + q + q2 + · · ·+ qm−1 =⇒ lim

q↑1
[m]q = m.



(1.3)

Using the idea of q-integration introduced by Jackson [13], Aldweby and Darus

[1] defined the Bernardi q-integral operator of f ∈ A as follows.

Definition 1.2 (Bernardi q-Integral Operator). Let f(z) ∈ A, then the

Bernardi q-integral operator Lq,k : A −→ A (q ∈ (0, 1), k > −1) is defined by

Lq,kf(z) =
[1 + k]q
zk

∫ z

0
tk−1f(t)dqt = z +

∞∑
m=2

[1 + k]q
[m+ k]q

amz
m. (1.4)

Remark 1.3. The following properties hold for the function in (1.4).

1. lim
q↑1

Lq,0f(z) =
∫ z
0 t
−1f(t)dt = z +

∞∑
m=2

(
1
m

)
amz

m is the Alexander integral

operator in [2].

2. lim
q↑1

Lq,1(z) = 2
z

∫ z
0 f(t)dt = z +

∞∑
m=2

(
2

m+1

)
amz

m is the Libera integral

operator in [19].

3. lim
q↑1

Lq,kf(z) = 1+k
zk

∫ z
0 t

k−1f(t)dt = z +
∞∑
m=2

(
1+k
m+k

)
amz

m is the Bernardi

integral operator in [5].

4. Lq,0f(z) =
∫ z
0 t
−1f(t)dqt = z+

∞∑
m=2

1
[m]q

amz
m is the q-analogue of Alexander

integral operator.
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5. Lq,1(z) =
[2]q
z

∫ z
0 f(t)dqt = z +

∞∑
m=2

[2]q
[m+1]q

amz
m is the q-analogue of Libera

integral operator.

6. zDq(Lq,0f(z)) = f(z) = z lim
q↑1

[Dq(Lq,0f(z))].

Motivated by the works of Lasode and Opoola [15] and Srivastava and Bansal

[29]; the q-derivative operator in (1.3) and the q-integral operator in (1.4), we

hereby present our new class as follows.

Definition 1.4. Let q ∈ (0, 1), γ ∈ C \ {0}, λ ∈ [0, 1] and δ ∈ [0, 1). A function

f ∈ Ξ is said to be a member of class Ξq(k, γ, λ, δ) if the conditions

Re
{

1 +
1

γ

[
Dq(Lq,kf(z)) + λzD2

q(Lq,kf(z))− 1
]}

> δ (|z| < 1) (1.5)

and

Re
{

1 +
1

γ

[
Dq(Lq,kF(w)) + λwD2

q(Lq,kF(w))− 1
]}

> δ (|w| < 1) (1.6)

hold where F(w) = f−1(w) is defined in (1.2).

Remark 1.5. The following itemized subclasses hold.

1. lim
q↑1

Ξq(0, 1, 0, δ) = Ξ(δ) is the function class investigated by Srivastava et

al. [31].

2. lim
q↑1

Ξq(0, 1, λ, δ) = Ξ(λ, δ) is the function class investigated by Frasin [9],

see also Srivastava et al. [30].

3. Ξq(0, 1, 0, δ) = Ξq(δ) is the function class investigated by Bulut [7].

4. Ξq(0, 1, λ, δ) = Ξq(λ, δ) is the function class investigated by Sabil et al. [25].

5. Ξq(0, 1, λ, δ) = Ξq(λ, δ) is the function class investigated by Motamednezhad

and Salehian for p = 1 in [23].

The purpose of our present paper is to investigate a subclass of bi-univalent

functions with positive real parts in |z| < 1. The coefficient estimates |a2|, |a3|,
|a4| are discussed, and the upper bound for the Fekete-Szegö functional |a3−αa22|
for real and complex parameters are established.
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2 Applicable Lemmas

Let P be the class of analytic functions of the form

p(z) = 1 +
∞∑
m=1

pmz
m (p(0) = 1, Re p(z) > 0, |z| < 1). (2.1)

Lemma 2.1 ([10]). If p ∈ P, then |pm| 5 2 (m ∈ N).

Lemma 2.2 ([20]). If p ∈ P, then 2p2 = p21 + (4− p21)x for some x with |x| 5 1.

3 Main Results

Unless otherwise declared, we assume henceforth in this paper that q ∈ (0, 1),

γ ∈ C \ {0}, λ ∈ [0, 1], δ ∈ [0, 1), k > −1 and f ∈ Ξ. With these background, we

establish our main results.

3.1 Coefficient estimates

Theorem 3.1. Let f(z) ∈ Ξq(k, γ, λ, δ). Then

|a2| 5
√

2|γ|(1− δ)√
[1+k]q
[3+k]q

[3]q(1 + [2]qλ)
(3.1)

|a3| 5
2|γ|(1− δ)

[1+k]q
[3+k]q

[3]q(1 + [2]qλ)
+

4|γ|2(1− δ)2{
[1+k]q
[2+k]q

[2]q(1 + [1]qλ)
}2 (3.2)

|a4| 5
2|γ|(1− δ)

[1+k]q
[4+k]q

[4]q(1 + [3]qλ)
+

10|γ|2(1− δ)2
[1+k]q
[2+k]q

[2]q(1 + [1]qλ)
[1+k]q
[3+k]q

[3]q(1 + [2]qλ)
. (3.3)

Proof. Consider the functions

B(z) = 1 +
∞∑
m=1

bmz
m, C(z) = 1 +

∞∑
m=1

cmz
m ∈ P, (3.4)

so that from (1.5), (1.6), (2.1) and (3.4) we define the equations

1 +
1

γ

[
Dq(Lq,kf(z)) + λzD2

q(Lq,kf(z))− 1
]

= δ + (1− δ)B(z) (|z| < 1) (3.5)
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and

1+
1

γ

[
Dq(Lq,kF(w))+λwD2

q(Lq,kF(w))−1
]

= δ+(1−δ)C(w) (|w| < 1). (3.6)

Comparing coefficients in (3.5) leads to

[1 + k]q
[2 + k]q

[2]q(1 + [1]qλ)a2 = γ(1− δ)b1, (3.7)

[1 + k]q
[3 + k]q

[3]q(1 + [2]qλ)a3 = γ(1− δ)b2, (3.8)

[1 + k]q
[4 + k]q

[4]q(1 + [3]qλ)a4 = γ(1− δ)b3 (3.9)

and comparing coefficients in (3.6) in view of (1.2) leads to

− [1 + k]q
[2 + k]q

[2]q(1 + [1]qλ)a2 = γ(1− δ)c1, (3.10)

[1 + k]q
[3 + k]q

[3]q(1 + [2]qλ)(2a22 − a3) = γ(1− δ)c2, (3.11)

− [1 + k]q
[4 + k]q

[4]q(1 + [3]qλ)(5a32 − 5a2a3 + a4) = γ(1− δ)c3. (3.12)

Adding (3.7) and (3.10) leads to

[1 + k]q
[2 + k]q

[2]q(1 + [1]qλ)a2 −
[1 + k]q
[2 + k]q

[2]q(1 + [1]qλ)a2

= γ(1− δ)b1 + γ(1− δ)c1 =⇒

{
b1 = −c1,
b21 = c21.

(3.13)

Now if we square (3.7) and (3.10) and add the results together we obtain

2

{
[1 + k]q
[2 + k]q

[2]q(1 + [1]qλ)

}2

a22 = γ2(1− δ)2(b21 + c21). (3.14)

Adding (3.8) and (3.11) leads to

a22 =
γ(1− δ)(b2 + c2)

2
[1+k]q
[3+k]q

[3]q(1 + [2]qλ)
(3.15)
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and applying Lemma 2.1 yields inequality (3.1).

Also, subtracting (3.8) from (3.11) leads to

a3 = a22 +
γ(1− δ)(b2 − c2)

2
[1+k]q
[3+k]q

[3]q(1 + [2]qλ)
(3.16)

so that by applying (3.13) in (3.14) and putting the result in (3.16) leads to

a3 =
γ2(1− δ)2b21{

[1+k]q
[2+k]q

[2]q(1 + [1]qλ)
}2 +

γ(1− δ)(b2 − c2)
2
[1+k]q
[3+k]q

[3]q(1 + [2]qλ)
(3.17)

and applying Lemma 2.1 yield inequality (3.2).

Likewise, subtracting (3.9) from (3.12) leads to

2a4 =
γ(1− δ)(b3 − c3)

[1+k]q
[4+k]q

[4]q(1 + [3]qλ)
− 5(a32 − a2a3) (3.18)

and observe that from (3.7) and (3.16) we obtain

a32 − a2a3 = − γ2(1− δ)2(b2 − c2)b1
2
[1+k]q
[2+k]q

[2]q(1 + [1]qλ)
[1+k]q
[3+k]q

[3]q(1 + [2]qλ)
(3.19)

so that by putting (3.19) into (3.18) leads to

a4 =
γ(1− δ)(b3 − c3)

2
[1+k]q
[4+k]q

[4]q(1 + [3]qλ)
+

5γ2(1− δ)2(b2 − c2)b1
4
[1+k]q
[2+k]q

[2]q(1 + [1]qλ)
[1+k]q
[3+k]q

[3]q(1 + [2]qλ)
(3.20)

and applying Lemma 2.1 yields inequality (3.3).

Corollary 3.2. Let f(z) ∈ lim
q↑1

Ξq(k, γ, λ, δ). Then

|a2| 5
√

2|γ|(1− δ)√
3(1+k3+k )(1 + 2λ)

|a3| 5
|γ|2(1− δ)2

(1+k2+k )2(1 + λ)2
+

2|γ|(1− δ)
3(1+k3+k )(1 + 2λ)

|a4| 5
5|γ|2(1− δ)2

3(1+k2+k )(1+k3+k )(1 + λ)(1 + 2λ)
+

|γ|(1− δ)
2(1+k4+k )(1 + 3λ)

.

Remark 3.3. The estimates in Theorem 3.1 will reduce to the results of the

authors mentioned in Remark 1.5 when some involving parameters are varied

accordingly.
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3.2 The Fekete-Szegö Functional

Fekete and Szegö [8] released a classical theorem which states that for all f(z) =

z + a2z
2 + a3z

3 + · · · ∈ S, the coefficient functional

|a3 − αa22| 5


3− 4α if α 5 0,

1 + 2e−(2α)/(1−α) if 0 5 α 5 1,

4α− 3 if α = 1,

is satisfied. This became a great consideration when Fekete and Szegö [8] proved

the Littlewood-Parley conjunction to be negative. This inequality is known to be

sharp since there is always a function in S such that the equality holds for each

α ∈ R. For some recent works on Fekete-Szegö problem for some subclasses of Ξ

see [15, 21, 22].

Motivated by the works of the aforementioned authors, we now obtain the

Fekete-Szegö inequalities for the class Ξq(k, γ, λ, δ).

Proposition 3.4. From (3.4) and Lemma 2.2, we obtain

2b2 = b21 + x(4− b21)
2c2 = c21 + y(4− c21)

}
=⇒ 2(b2 − c2) = (4− b21)(x− y)

for some x, y such that |x|, |y| 5 1.

Theorem 3.5. Let f(z) ∈ Ξq(k, γ, λ, δ) and α ∈ R. Then

|a3 − αa22| 5


|γ|(1−δ)

[1+k]q
[3+k]q

[3]q(1+[2]qλ)
|φ(α)| for |φ(α)| = 1

2|γ|(1−δ)
[1+k]q
[3+k]q

[3]q(1+[2]qλ)
for 0 5 |φ(α)| 5 1

(3.21)

where φ(α) = 1− α.
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Proof. Consider (3.15) and (3.16), and using (3.13) we obtain

a3 − αa22 = a22 +
γ(1− δ)(b2 − c2)

2
[1+k]q
[3+k]q

[3]q(1 + [2]qλ)
− αa22

=
γ(1− δ)(b2 − c2)

2
[1+k]q
[3+k]q

[3]q(1 + [2]qλ)
+ (1− α)a22

=
γ(1− δ)(b2 − c2)

2
[1+k]q
[3+k]q

[3]q(1 + [2]qλ)
+ (1− α)

γ(1− δ)(b2 + c2)

2
[1+k]q
[3+k]q

[3]q(1 + [2]qλ)

=
γ(1− δ)

2
[1+k]q
[3+k]q

[3]q(1 + [2]qλ)
{(φ(α) + 1)b2 + (φ(α)− 1)c2}

for φ(α) = (1− α). Now applying triangle inequality and Lemma 2.1 leads to

|a3 − αa22| 5
2|γ|(1− δ)

[1+k]q
[3+k]q

[3]q(1 + [2]qλ)
{|φ(α)|+ 1}

from where we can conclude that inequality (3.21) holds.

Theorem 3.6. Let f(z) ∈ Ξq(k, γ, λ, δ) and β ∈ C. Then

|a3−βa22| 5



2|γ|(1−δ)
[1+k]q
[3+k]q

[3]q(1+[2]qλ)
for |1− β| ∈

[
0,

{
[1+k]q
[2+k]q

[2]q(1+[1]qλ)
}2

2|γ|(1−δ) [1+k]q
[3+k]q

[3]q(1+[2]qλ)

)

4|γ|2(1−δ)2{
[1+k]q
[2+k]q

[2]q(1+[1]qλ)
}2 |1− β| for |1− β| ∈

[ {
[1+k]q
[2+k]q

[2]q(1+[1]qλ)
}2

2|γ|(1−δ) [1+k]q
[3+k]q

[3]q(1+[2]qλ)
,∞

)
.

(3.22)

Proof. Consider (3.15) and (3.16), and using (3.13) we obtain

a3 − βa22 = a22 +
γ(1− δ)(b2 − c2)

2
[1+k]q
[3+k]q

[3]q(1 + [2]qλ)
− βa22

=
γ2(1− δ)2(1− β)b21{
[1+k]q
[2+k]q

[2]q(1 + [1]qλ)
}2 +

γ(1− δ)(b2 − c2)
2
[1+k]q
[3+k]q

[3]q(1 + [2]qλ)
. (3.23)

Applying Preposition 3.4 leads to

a3−βa22 = (1−β)
γ2(1− δ)2b21{

[1+k]q
[2+k]q

[2]q(1 + [1]qλ)
}2 +

γ(1− δ)(4− b21)
4
[1+k]q
[3+k]q

[3]q(1 + [2]qλ)
(x−y). (3.24)
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Recall that for B(z) ∈ P in (3.4), |b1| 5 2 by Lemma 2.1 and for simplicity, let

b = b1 5 2 so that we may assume without any restriction that b ∈ [0, 2]. Now,

using triangle inequality and letting X = |x| 5 1 and Y = |y| 5 1, then (3.24)

becomes

|a3 − βa22| =

∣∣∣∣∣∣∣(1− β)
γ2(1− δ)2b2{

[1+k]q
[2+k]q

[2]q(1 + [1]qλ)
}2 +

γ(1− δ)(4− b2)
4
[1+k]q
[3+k]q

[3]q(1 + [2]qλ)
(x− y)

∣∣∣∣∣∣∣
5 |1− β| |γ|2(1− δ)2b2{

[1+k]q
[2+k]q

[2]q(1 + [1]qλ)
}2 +

|γ|(1− δ)(4− b2)
4
[1+k]q
[3+k]q

[3]q(1 + [2]qλ)
(X + Y )

= ϕ(X,Y ). (3.25)

For X,Y ∈ [0, 1],

max{ϕ(X,Y )}

=ϕ(1, 1) = |1− β| |γ|2(1− δ)2b2{
[1+k]q
[2+k]q

[2]q(1 + [1]qλ)
}2 +

|γ|(1− δ)(4− b2)
2
[1+k]q
[3+k]q

[3]q(1 + [2]qλ)

=|1− β| |γ|2(1− δ)2b2{
[1+k]q
[2+k]q

[2]q(1 + [1]qλ)
}2 +

2|γ|(1− δ)
[1+k]q
[3+k]q

[3]q(1 + [2]qλ)

− |γ|(1− δ)b2

2
[1+k]q
[3+k]q

[3]q(1 + [2]qλ)

=
|γ|2(1− δ)2{

[1+k]q
[2+k]q

[2]q(1 + [1]qλ)
}2

|1− β| − Θ2
2

2|γ|(1− δ) [1+k]q[3+k]q
[3]q(1 + [2]qλ)

 b2

+
2|γ|(1− δ)

[1+k]q
[3+k]q

[3]q(1 + [2]qλ)
= ψ(b).

For b ∈ [0, 2],

ψ′(b) =
2|γ|2(1− δ)2{

[1+k]q
[2+k]q

[2]q(1 + [1]qλ)
}2

|1− β| −
{

[1+k]q
[2+k]q

[2]q(1 + [1]qλ)
}2

2|γ|(1− δ) [1+k]q[3+k]q
[3]q(1 + [2]qλ)

 b

(3.26)
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implies that there is a critical point at ψ′(b) = 0. Clearly,

ψ′(b) < 0, if |1− β| ∈

0,

{
[1+k]q
[2+k]q

[2]q(1 + [1]qλ)
}2

2|γ|(1− δ) [1+k]q[3+k]q
[3]q(1 + [2]qλ)

 (3.27)

thus, the function ψ(b) is strictly a decreasing function of |1 − β| ∈[
0,

{
[1+k]q
[2+k]q

[2]q(1+[1]qλ)
}2

2|γ|(1−δ) [1+k]q
[3+k]q

[3]q(1+[2]qλ)

)
, therefore,

max{ψ(b) : b ∈ [0, 2]} = ψ(0) =
2|γ|(1− δ)

[1+k]q
[3+k]q

[3]q(1 + [2]qλ)
. (3.28)

Likewise for

ψ′(b) = 0, |1− β| ∈


{

[1+k]q
[2+k]q

[2]q(1 + [1]qλ)
}2

2|γ|(1− δ) [1+k]q[3+k]q
[3]q(1 + [2]qλ)

, 0

 (3.29)

implies that function ψ(b) is an increasing function of |1 − β| ∈[ {
[1+k]q
[2+k]q

[2]q(1+[1]qλ)
}2

2|γ|(1−δ) [1+k]q
[3+k]q

[3]q(1+[2]qλ)
, 0

)
, therefore,

max{ψ(b) : b ∈ [0, 2]} = ψ(2) =
4|γ|2(1− δ)2|1− β|{
[1+k]q
[2+k]q

[2]q(1 + [1]qλ)
}2 (3.30)

hence the proof is complete.
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