Estimates for a Generalized Class of Analytic and Bi-univalent Functions Involving Two q-Operators

Ayotunde Olajide Lasode
Department of Mathematics, Faculty of Physical Sciences, University of Ilorin, PMB 1515, Ilorin, Nigeria
e-mail: lasode_ayo@yahoo.com

Abstract

By making use of q-derivative and q-integral operators, we define a class of analytic and bi-univalent functions in the unit disk $|z|<1$. Subsequently, we investigate some properties such as some early coefficient estimates and then obtain the Fekete-Szegö inequality for both real and complex parameters. Further, some interesting corollaries are discussed.

1 Introduction

In what follows, let \mathcal{A} represent the class of analytic functions normalized by the conditions $f(0)=0=f^{\prime}(0)-1$ so that $f(z)$ is of the Maclaurin series representation:

$$
\begin{equation*}
f(z)=z+\sum_{m=2}^{\infty} a_{m} z^{m} \quad(|z|<1) \tag{1.1}
\end{equation*}
$$

Also let \mathcal{S} represent the subset of \mathcal{A} which is the class of analytic and univalent functions in $|z|<1$. In view of function class \mathcal{S}, the Koebe one-quarter theorem is a familiar theorem that asserts that the range of every function $f \in \mathcal{S}$ covers the disk

$$
\mathbb{D}=\{w:|w|<0.25\} \subset f(|z|<1)
$$

For this reason, $f \in \mathcal{S}$ of the form (1.1) has the inverse function f^{-1} such that

$$
f^{-1}(f(z))=z \quad(|z|<1)
$$

[^0]and
$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f), r_{0}(f) \geqq 0.25\right)
$$
where by simple calculation we get
\[

$$
\begin{equation*}
\mathcal{F}(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \tag{1.2}
\end{equation*}
$$

\]

A function $f \in \mathcal{S}$ is said to be bi-univalent if both $f(z)$ and $\mathcal{F}(w)$ are univalent in $|z|<1$. We represent by Ξ the class of analytic and bi-univalent functions in $|z|<1$.

We thus remark that class Ξ is a non-empty set because the functions:

$$
f(z)=z, \quad f(z)=z(1-z)^{-1}, \quad f(z)=-\log (1-z)
$$

and more are in Ξ. Note that the familiar functions:

$$
f(z)=z(1-z)^{-2}, \quad f(\theta ; z)=z\left(1-e^{i \theta} z\right)^{-2} \quad \text { and } \quad f(z)=z\left(1-z^{2}\right)^{-1}
$$

that are in class \mathcal{S} are non-members of Ξ.
Historically, Lewin [18] presented the class Ξ of \mathcal{A} and established that every function $f \in \Xi$ has coefficient estimate $\left|a_{2}\right|<1.51$. Other established estimates for $f \in \Xi$ that improved that of Lewin [18] are $\left|a_{2}\right| \leqq \sqrt{2},\left|a_{2}\right| \leqq 4 / 3$ and $\left|a_{2}\right| \leqq 1.485$ in [6, 24, 33] respectively. The estimates $\left|a_{m}\right|(m=\{3,4, \ldots\})$ are presumed yet unsolved. We refer interested readers to the works in [6, 7, 9, 15, [21, 22, 25, 26, 27, 29, 34, 35] for more information on history, properties and definitions of some existing subclasses of Ξ.

In recent times, the concept of q-calculus (q-difference, q-integral, q-series and q-numbers) has attracted the attention of theorists of geometric functions. The concept of q-analysis was first introduced in the works of Jackson [11, 12, 13] and since then many researchers (such as in [7, 15, 16, 17, 25, 32]) have used it in various ways to define and establish some properties of many classes of functions in Geometric Function Theory. In particular, Aral et al. [4], Annaby and Mansour [3], Kac and Cheung [14] and Srivastava [28] extensively discussed some applications of q-calculus in so many areas of $(q$ - $)$ analysis.

Definition 1.1 ([11, [12]). For function $f(z) \in \mathcal{A}$ of the form (1.1) and $q \in(0,1)$, the q-derivative operator $\mathcal{D}_{q}: \mathcal{A} \longrightarrow \mathcal{A}$ of $f(z)$ is defined by

$$
\left.\begin{array}{l}
\mathcal{D}_{q} f(z)=\frac{f(z)-f(q z)}{z(1-q)}=1+\sum_{m=2}^{\infty}[m]_{q} a_{m} z^{m-1} \quad(z \neq 0) \\
\mathcal{D}_{q} f(0)=f^{\prime}(0)=1 \quad(z=0) \quad \text { if it exists } \\
\mathcal{D}_{q}^{2} f(z)=\mathcal{D}_{q}\left(\mathcal{D}_{q} f(z)\right)=\sum_{m=2}^{\infty}[m-1]_{q}[m]_{q} a_{m} z^{m-2} \tag{1.3}\\
\text { where }[m]_{q}=\frac{1-q^{m}}{1-q}=1+q+q^{2}+\cdots+q^{m-1} \Longrightarrow \lim _{q \uparrow 1}[m]_{q}=m
\end{array}\right\}
$$

Using the idea of q-integration introduced by Jackson [13, Aldweby and Darus [1] defined the Bernardi q-integral operator of $f \in \mathcal{A}$ as follows.

Definition 1.2 (Bernardi q-Integral Operator). Let $f(z) \in \mathcal{A}$, then the Bernardi q-integral operator $\mathscr{L}_{q, k}: \mathcal{A} \longrightarrow \mathcal{A}(q \in(0,1), k>-1)$ is defined by

$$
\begin{equation*}
\mathscr{L}_{q, k} f(z)=\frac{[1+k]_{q}}{z^{k}} \int_{0}^{z} t^{k-1} f(t) d_{q} t=z+\sum_{m=2}^{\infty} \frac{[1+k]_{q}}{[m+k]_{q}} a_{m} z^{m} \tag{1.4}
\end{equation*}
$$

Remark 1.3. The following properties hold for the function in 1.4.

1. $\lim _{q \uparrow 1} \mathscr{L}_{q, 0} f(z)=\int_{0}^{z} t^{-1} f(t) d t=z+\sum_{m=2}^{\infty}\left(\frac{1}{m}\right) a_{m} z^{m}$ is the Alexander integral operator in [2].
2. $\lim _{q \uparrow 1} \mathscr{L}_{q, 1}(z)=\frac{2}{z} \int_{0}^{z} f(t) d t=z+\sum_{m=2}^{\infty}\left(\frac{2}{m+1}\right) a_{m} z^{m}$ is the Libera integral operator in [19].
3. $\lim _{q \uparrow 1} \mathscr{L}_{q, k} f(z)=\frac{1+k}{z^{k}} \int_{0}^{z} t^{k-1} f(t) d t=z+\sum_{m=2}^{\infty}\left(\frac{1+k}{m+k}\right) a_{m} z^{m}$ is the Bernardi integral operator in [5].
4. $\mathscr{L}_{q, 0} f(z)=\int_{0}^{z} t^{-1} f(t) d_{q} t=z+\sum_{m=2}^{\infty} \frac{1}{[m]_{q}} a_{m} z^{m}$ is the q-analogue of Alexander integral operator.
5. $\mathscr{L}_{q, 1}(z)=\frac{[2]_{q}}{z} \int_{0}^{z} f(t) d_{q} t=z+\sum_{m=2}^{\infty} \frac{[2]_{q}}{[m+1]_{q}} a_{m} z^{m}$ is the q-analogue of Libera integral operator.
6. $z \mathcal{D}_{q}\left(\mathscr{L}_{q, 0} f(z)\right)=f(z)=z \lim _{q \uparrow 1}\left[\mathcal{D}_{q}\left(\mathscr{L}_{q, 0} f(z)\right)\right]$.

Motivated by the works of Lasode and Opoola [15] and Srivastava and Bansal [29]; the q-derivative operator in 1.3) and the q-integral operator in (1.4), we hereby present our new class as follows.

Definition 1.4. Let $q \in(0,1), \gamma \in \mathbb{C} \backslash\{0\}, \lambda \in[0,1]$ and $\delta \in[0,1)$. A function $f \in \Xi$ is said to be a member of class $\Xi_{q}(k, \gamma, \lambda, \delta)$ if the conditions

$$
\begin{equation*}
\mathcal{R} e\left\{1+\frac{1}{\gamma}\left[\mathcal{D}_{q}\left(\mathscr{L}_{q, k} f(z)\right)+\lambda z \mathcal{D}_{q}^{2}\left(\mathscr{L}_{q, k} f(z)\right)-1\right]\right\}>\delta \quad(|z|<1) \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{R} e\left\{1+\frac{1}{\gamma}\left[\mathcal{D}_{q}\left(\mathscr{L}_{q, k} \mathcal{F}(w)\right)+\lambda w \mathcal{D}_{q}^{2}\left(\mathscr{L}_{q, k} \mathcal{F}(w)\right)-1\right]\right\}>\delta \quad(|w|<1) \tag{1.6}
\end{equation*}
$$

hold where $\mathcal{F}(w)=f^{-1}(w)$ is defined in 1.2).
Remark 1.5. The following itemized subclasses hold.

1. $\lim _{q \uparrow 1} \Xi_{q}(0,1,0, \delta)=\Xi(\delta)$ is the function class investigated by Srivastava et al. 31].
2. $\lim _{q \uparrow 1} \Xi_{q}(0,1, \lambda, \delta)=\Xi(\lambda, \delta)$ is the function class investigated by Frasin [9], see also Srivastava et al. [30].
3. $\Xi_{q}(0,1,0, \delta)=\Xi_{q}(\delta)$ is the function class investigated by Bulut [7].
4. $\Xi_{q}(0,1, \lambda, \delta)=\Xi_{q}(\lambda, \delta)$ is the function class investigated by Sabil et al. [25].
5. $\Xi_{q}(0,1, \lambda, \delta)=\Xi_{q}(\lambda, \delta)$ is the function class investigated by Motamednezhad and Salehian for $p=1$ in [23].

The purpose of our present paper is to investigate a subclass of bi-univalent functions with positive real parts in $|z|<1$. The coefficient estimates $\left|a_{2}\right|,\left|a_{3}\right|$, $\left|a_{4}\right|$ are discussed, and the upper bound for the Fekete-Szegö functional $\left|a_{3}-\alpha a_{2}^{2}\right|$ for real and complex parameters are established.

2 Applicable Lemmas

Let \mathcal{P} be the class of analytic functions of the form

$$
\begin{equation*}
p(z)=1+\sum_{m=1}^{\infty} p_{m} z^{m} \quad(p(0)=1, \mathcal{R} e p(z)>0,|z|<1) \tag{2.1}
\end{equation*}
$$

Lemma $2.1\left([10)\right.$. If $p \in \mathcal{P}$, then $\left|p_{m}\right| \leqq 2(m \in \mathbb{N})$.
Lemma $2.2([20])$. If $p \in \mathcal{P}$, then $2 p_{2}=p_{1}^{2}+\left(4-p_{1}^{2}\right) x$ for some x with $|x| \leqq 1$.

3 Main Results

Unless otherwise declared, we assume henceforth in this paper that $q \in(0,1)$, $\gamma \in \mathbb{C} \backslash\{0\}, \lambda \in[0,1], \delta \in[0,1), k>-1$ and $f \in \Xi$. With these background, we establish our main results.

3.1 Coefficient estimates

Theorem 3.1. Let $f(z) \in \Xi_{q}(k, \gamma, \lambda, \delta)$. Then

$$
\begin{align*}
& \left|a_{2}\right| \leqq \frac{\sqrt{2|\gamma|(1-\delta)}}{\sqrt{\frac{[1+k]_{q}}{\left[3+k_{q}\right.}[3]_{q}\left(1+[2]_{q} \lambda\right)}} \tag{3.1}\\
& \left|a_{3}\right| \leqq \frac{2|\gamma|(1-\delta)}{\frac{[1+k]_{q}}{[3+k]_{q}}[3]_{q}\left(1+[2]_{q} \lambda\right)}+\frac{4|\gamma|^{2}(1-\delta)^{2}}{\left\{\frac{[1+k]_{q}}{[2+k]_{q}}[2]_{q}\left(1+[1]_{q} \lambda\right)\right\}^{2}} \tag{3.2}\\
& \left|a_{4}\right| \leqq \frac{2|\gamma|(1-\delta)}{\frac{10+k]_{q}}{[4+k]_{q}}[4]_{q}\left(1+[3]_{q} \lambda\right)}+\frac{10|\gamma|^{2}(1-\delta)^{2}}{\frac{[1+k]_{q}}{[2+k]_{q}}[2]_{q}\left(1+[1]_{q} \lambda\right) \frac{[1+k]_{q}}{[3+k]_{q}}[3]_{q}\left(1+[2]_{q} \lambda\right)} \tag{3.3}
\end{align*}
$$

Proof. Consider the functions

$$
\begin{equation*}
\mathcal{B}(z)=1+\sum_{m=1}^{\infty} b_{m} z^{m}, \mathcal{C}(z)=1+\sum_{m=1}^{\infty} c_{m} z^{m} \in \mathcal{P} \tag{3.4}
\end{equation*}
$$

so that from (1.5), (1.6), (2.1) and (3.4) we define the equations

$$
\begin{equation*}
1+\frac{1}{\gamma}\left[\mathcal{D}_{q}\left(\mathscr{L}_{q, k} f(z)\right)+\lambda z \mathcal{D}_{q}^{2}\left(\mathscr{L}_{q, k} f(z)\right)-1\right]=\delta+(1-\delta) \mathcal{B}(z) \quad(|z|<1) \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{\gamma}\left[\mathcal{D}_{q}\left(\mathscr{L}_{q, k} \mathcal{F}(w)\right)+\lambda w \mathcal{D}_{q}^{2}\left(\mathscr{L}_{q, k} \mathcal{F}(w)\right)-1\right]=\delta+(1-\delta) \mathcal{C}(w) \quad(|w|<1) \tag{3.6}
\end{equation*}
$$

Comparing coefficients in 3.5 leads to

$$
\begin{align*}
& \frac{[1+k]_{q}}{[2+k]_{q}}[2]_{q}\left(1+[1]_{q} \lambda\right) a_{2}=\gamma(1-\delta) b_{1} \tag{3.7}\\
& \frac{[1+k]_{q}}{[3+k]_{q}}[3]_{q}\left(1+[2]_{q} \lambda\right) a_{3}=\gamma(1-\delta) b_{2} \tag{3.8}\\
& \frac{[1+k]_{q}}{[4+k]_{q}}[4]_{q}\left(1+[3]_{q} \lambda\right) a_{4}=\gamma(1-\delta) b_{3} \tag{3.9}
\end{align*}
$$

and comparing coefficients in (3.6) in view of (1.2) leads to

$$
\begin{gather*}
-\frac{[1+k]_{q}}{[2+k]_{q}}[2]_{q}\left(1+[1]_{q} \lambda\right) a_{2}=\gamma(1-\delta) c_{1} \tag{3.10}\\
\frac{[1+k]_{q}}{[3+k]_{q}}[3]_{q}\left(1+[2]_{q} \lambda\right)\left(2 a_{2}^{2}-a_{3}\right)=\gamma(1-\delta) c_{2} \tag{3.11}\\
-\frac{[1+k]_{q}}{[4+k]_{q}}[4]_{q}\left(1+[3]_{q} \lambda\right)\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right)=\gamma(1-\delta) c_{3} \tag{3.12}
\end{gather*}
$$

Adding (3.7) and (3.10 leads to

$$
\begin{align*}
\frac{[1+k]_{q}}{[2+k]_{q}}[2]_{q}\left(1+[1]_{q} \lambda\right) a_{2} & -\frac{[1+k]_{q}}{[2+k]_{q}}[2]_{q}\left(1+[1]_{q} \lambda\right) a_{2} \\
& =\gamma(1-\delta) b_{1}+\gamma(1-\delta) c_{1} \Longrightarrow\left\{\begin{array}{l}
b_{1}=-c_{1} \\
b_{1}^{2}=c_{1}^{2}
\end{array}\right. \tag{3.13}
\end{align*}
$$

Now if we square 3.7 and 3.10 and add the results together we obtain

$$
\begin{equation*}
2\left\{\frac{[1+k]_{q}}{[2+k]_{q}}[2]_{q}\left(1+[1]_{q} \lambda\right)\right\}^{2} a_{2}^{2}=\gamma^{2}(1-\delta)^{2}\left(b_{1}^{2}+c_{1}^{2}\right) \tag{3.14}
\end{equation*}
$$

Adding (3.8) and (3.11) leads to

$$
\begin{equation*}
a_{2}^{2}=\frac{\gamma(1-\delta)\left(b_{2}+c_{2}\right)}{2 \frac{[1+k]_{q}}{[3+k]_{q}}[3]_{q}\left(1+[2]_{q} \lambda\right)} \tag{3.15}
\end{equation*}
$$

and applying Lemma 2.1 yields inequality (3.1).
Also, subtracting (3.8) from (3.11) leads to

$$
\begin{equation*}
\left.\left.a_{3}=a_{2}^{2}+\frac{\gamma(1-\delta)\left(b_{2}-c_{2}\right)}{2[1+k]_{q}}[3+k]_{q}\right]\right]_{q}\left(1+[2]_{q} \lambda\right) \tag{3.16}
\end{equation*}
$$

so that by applying (3.13) in (3.14) and putting the result in (3.16) leads to

$$
\begin{equation*}
a_{3}=\frac{\gamma^{2}(1-\delta)^{2} b_{1}^{2}}{\left\{\frac{[1+k]_{q}}{[2+k]_{q}}[2]_{q}\left(1+[1]_{q} \lambda\right)\right\}^{2}}+\frac{\gamma(1-\delta)\left(b_{2}-c_{2}\right)}{2 \frac{[1+k]_{q}}{[3+k]_{q}}[3]_{q}\left(1+[2]_{q} \lambda\right)} \tag{3.17}
\end{equation*}
$$

and applying Lemma 2.1 yield inequality (3.2).
Likewise, subtracting (3.9) from (3.12) leads to

$$
\begin{equation*}
2 a_{4}=\frac{\gamma(1-\delta)\left(b_{3}-c_{3}\right)}{\frac{[1+k]_{q}}{[4+k]_{q}}[4]_{q}\left(1+[3]_{q} \lambda\right)}-5\left(a_{2}^{3}-a_{2} a_{3}\right) \tag{3.18}
\end{equation*}
$$

and observe that from (3.7) and (3.16) we obtain

$$
\begin{equation*}
a_{2}^{3}-a_{2} a_{3}=-\frac{\gamma^{2}(1-\delta)^{2}\left(b_{2}-c_{2}\right) b_{1}}{2 \frac{[1+k]_{q}}{[2+k]_{q}}[2]_{q}\left(1+[1]_{q} \lambda\right) \frac{[1+k]_{q}}{[3+k]_{q}}[3]_{q}\left(1+[2]_{q} \lambda\right)} \tag{3.19}
\end{equation*}
$$

so that by putting (3.19) into (3.18) leads to

$$
\begin{equation*}
a_{4}=\frac{\gamma(1-\delta)\left(b_{3}-c_{3}\right)}{2 \frac{[1+k]_{q}}{[4+k]_{q}}[4]_{q}\left(1+[3]_{q} \lambda\right)}+\frac{5 \gamma^{2}(1-\delta)^{2}\left(b_{2}-c_{2}\right) b_{1}}{4 \frac{[1+k]_{q}}{[2+k]_{q}}[2]_{q}\left(1+[1]_{q} \lambda\right) \frac{[1+k]_{q}}{[3+k]_{q}}[3]_{q}\left(1+[2]_{q} \lambda\right)} \tag{3.20}
\end{equation*}
$$

and applying Lemma 2.1 yields inequality (3.3).
Corollary 3.2. Let $f(z) \in \lim _{q \uparrow 1} \Xi_{q}(k, \gamma, \lambda, \delta)$. Then

$$
\begin{aligned}
& \left|a_{2}\right| \leqq \frac{\sqrt{2|\gamma|(1-\delta)}}{\sqrt{3\left(\frac{1+k}{3+k}\right)(1+2 \lambda)}} \\
& \left|a_{3}\right| \leqq \frac{|\gamma|^{2}(1-\delta)^{2}}{\left(\frac{1+k}{2+k}\right)^{2}(1+\lambda)^{2}}+\frac{2|\gamma|(1-\delta)}{3\left(\frac{1+k}{3+k}\right)(1+2 \lambda)} \\
& \left|a_{4}\right| \leqq \frac{5|\gamma|^{2}(1-\delta)^{2}}{3\left(\frac{1+k}{2+k}\right)\left(\frac{1+k}{3+k}\right)(1+\lambda)(1+2 \lambda)}+\frac{|\gamma|(1-\delta)}{2\left(\frac{1+k}{4+k}\right)(1+3 \lambda)} .
\end{aligned}
$$

Remark 3.3. The estimates in Theorem 3.1 will reduce to the results of the authors mentioned in Remark 1.5 when some involving parameters are varied accordingly.

3.2 The Fekete-Szegö Functional

Fekete and Szegö [8] released a classical theorem which states that for all $f(z)=$ $z+a_{2} z^{2}+a_{3} z^{3}+\cdots \in \mathcal{S}$, the coefficient functional

$$
\left|a_{3}-\alpha a_{2}^{2}\right| \leqq\left\{\begin{array}{rll}
3-4 \alpha & \text { if } & \alpha \leqq 0 \\
1+2 e^{-(2 \alpha) /(1-\alpha)} & \text { if } & 0 \leqq \alpha \leqq 1 \\
4 \alpha-3 & \text { if } & \alpha \geqq 1
\end{array}\right.
$$

is satisfied. This became a great consideration when Fekete and Szegö [8] proved the Littlewood-Parley conjunction to be negative. This inequality is known to be sharp since there is always a function in \mathcal{S} such that the equality holds for each $\alpha \in \mathbb{R}$. For some recent works on Fekete-Szegö problem for some subclasses of Ξ see [15, 21, 22].

Motivated by the works of the aforementioned authors, we now obtain the Fekete-Szegö inequalities for the class $\Xi_{q}(k, \gamma, \lambda, \delta)$.

Proposition 3.4. From (3.4) and Lemma 2.2, we obtain

$$
\left.\begin{array}{l}
2 b_{2}=b_{1}^{2}+x\left(4-b_{1}^{2}\right) \\
2 c_{2}=c_{1}^{2}+y\left(4-c_{1}^{2}\right)
\end{array}\right\} \Longrightarrow 2\left(b_{2}-c_{2}\right)=\left(4-b_{1}^{2}\right)(x-y)
$$

for some x, y such that $|x|,|y| \leqq 1$.

Theorem 3.5. Let $f(z) \in \Xi_{q}(k, \gamma, \lambda, \delta)$ and $\alpha \in \mathbb{R}$. Then

$$
\left|a_{3}-\alpha a_{2}^{2}\right| \leqq\left\{\begin{array}{lll}
\frac{|\gamma|(1-\delta)}{\frac{[1+k]_{q}}{[3+k]_{q}}[3]_{q}\left(1+[2]_{q} \lambda\right)}|\phi(\alpha)| & \text { for } & |\phi(\alpha)| \geqq 1 \tag{3.21}\\
\frac{2|\gamma|(1-\delta)}{\frac{[1+k]_{q}}{\left[3+k_{q}\right.}[3]_{q}\left(1+[2]_{q} \lambda\right)} & \text { for } & 0 \leqq|\phi(\alpha)| \leqq 1
\end{array}\right.
$$

where $\phi(\alpha)=1-\alpha$.

Proof. Consider (3.15) and (3.16), and using 3.13 we obtain

$$
\begin{aligned}
a_{3}-\alpha a_{2}^{2} & =a_{2}^{2}+\frac{\gamma(1-\delta)\left(b_{2}-c_{2}\right)}{2 \frac{[1+k]_{q}}{[3+k]_{q}}[3]_{q}\left(1+[2]_{q} \lambda\right)}-\alpha a_{2}^{2} \\
& =\frac{\gamma(1-\delta)\left(b_{2}-c_{2}\right)}{2 \frac{[1+k]_{q}}{[3+k]_{q}}[3]_{q}\left(1+[2]_{q} \lambda\right)}+(1-\alpha) a_{2}^{2} \\
& =\frac{\gamma(1-\delta)\left(b_{2}-c_{2}\right)}{2 \frac{[1+k]_{q}}{[3+k]_{q}}[3]_{q}\left(1+[2]_{q} \lambda\right)}+(1-\alpha) \frac{\gamma(1-\delta)\left(b_{2}+c_{2}\right)}{2 \frac{[1+k]_{q}}{[3+k]_{q}}[3]_{q}\left(1+[2]_{q} \lambda\right)} \\
& =\frac{\gamma(1-\delta)}{2 \frac{[1+k]_{q}}{[3+k]_{q}}[3]_{q}\left(1+[2]_{q} \lambda\right)}\left\{(\phi(\alpha)+1) b_{2}+(\phi(\alpha)-1) c_{2}\right\}
\end{aligned}
$$

for $\phi(\alpha)=(1-\alpha)$. Now applying triangle inequality and Lemma 2.1 leads to

$$
\left|a_{3}-\alpha a_{2}^{2}\right| \leqq \frac{2|\gamma|(1-\delta)}{\frac{[1+k]_{q}}{[3+k]_{q}}[3]_{q}\left(1+[2]_{q} \lambda\right)}\{|\phi(\alpha)|+1\}
$$

from where we can conclude that inequality (3.21) holds.
Theorem 3.6. Let $f(z) \in \Xi_{q}(k, \gamma, \lambda, \delta)$ and $\beta \in \mathbb{C}$. Then

Proof. Consider (3.15) and 3.16), and using (3.13) we obtain

$$
\begin{align*}
a_{3}-\beta a_{2}^{2} & =a_{2}^{2}+\frac{\gamma(1-\delta)\left(b_{2}-c_{2}\right)}{2 \frac{[1+k]_{q}}{[3+k]_{q}}[3]_{q}\left(1+[2]_{q} \lambda\right)}-\beta a_{2}^{2} \\
& =\frac{\gamma^{2}(1-\delta)^{2}(1-\beta) b_{1}^{2}}{\left\{\frac{[1+k]_{q}}{[2+k]_{q}}[2]_{q}\left(1+[1]_{q} \lambda\right)\right\}^{2}}+\frac{\gamma(1-\delta)\left(b_{2}-c_{2}\right)}{2 \frac{[1+k]_{q}}{[3+k]_{q}}[3]_{q}\left(1+[2]_{q} \lambda\right)} \tag{3.23}
\end{align*}
$$

Applying Preposition 3.4 leads to

$$
\begin{equation*}
a_{3}-\beta a_{2}^{2}=(1-\beta) \frac{\gamma^{2}(1-\delta)^{2} b_{1}^{2}}{\left\{\frac{[1+k]_{q}}{[2+k]_{q}}[2]_{q}\left(1+[1]_{q} \lambda\right)\right\}^{2}}+\frac{\gamma(1-\delta)\left(4-b_{1}^{2}\right)}{4 \frac{[1+k]_{q}}{[3+k]_{q}}[3]_{q}\left(1+[2]_{q} \lambda\right)}(x-y) \tag{3.24}
\end{equation*}
$$

Recall that for $\mathcal{B}(z) \in \mathcal{P}$ in (3.4), $\left|b_{1}\right| \leqq 2$ by Lemma 2.1 and for simplicity, let $b=b_{1} \leqq 2$ so that we may assume without any restriction that $b \in[0,2]$. Now, using triangle inequality and letting $X=|x| \leqq 1$ and $Y=|y| \leqq 1$, then (3.24) becomes

$$
\begin{align*}
\left|a_{3}-\beta a_{2}^{2}\right| & =\left|(1-\beta) \frac{\gamma^{2}(1-\delta)^{2} b^{2}}{\left\{\frac{[1+k]_{q}}{[2+k]_{q}}[2]_{q}\left(1+[1]_{q} \lambda\right)\right\}^{2}}+\frac{\gamma(1-\delta)\left(4-b^{2}\right)}{4 \frac{[1+k]_{q}}{[3+k]_{q}}[3]_{q}\left(1+[2]_{q} \lambda\right)}(x-y)\right| \\
& \leqq|1-\beta| \frac{|\gamma|^{2}(1-\delta)^{2} b^{2}}{\left\{\frac{[1+k]_{q}}{[2+k]_{q}}[2]_{q}\left(1+[1]_{q} \lambda\right)\right\}^{2}}+\frac{|\gamma|(1-\delta)\left(4-b^{2}\right)}{4 \frac{[1+k]_{q}}{[3+k]_{q}}[3]_{q}\left(1+[2]_{q} \lambda\right)}(X+Y) \\
& =\varphi(X, Y) \tag{3.25}
\end{align*}
$$

For $X, Y \in[0,1]$,

$$
\begin{aligned}
& \max \{\varphi(X, Y)\} \\
= & \varphi(1,1)=|1-\beta| \frac{|\gamma|^{2}(1-\delta)^{2} b^{2}}{\left\{\frac{[1+k]_{q}}{[2+k]_{q}}[2]_{q}\left(1+[1]_{q} \lambda\right)\right\}^{2}}+\frac{|\gamma|(1-\delta)\left(4-b^{2}\right)}{2 \frac{[1+k]_{q}}{[3+k]_{q}}[3]_{q}\left(1+[2]_{q} \lambda\right)} \\
= & |1-\beta| \frac{|\gamma|^{2}(1-\delta)^{2} b^{2}}{\left\{\frac{[1+k]_{q}}{[2+k]_{q}}[2]_{q}\left(1+[1]_{q} \lambda\right)\right\}^{2}}+\frac{2|\gamma|(1-\delta)}{\frac{[1+k]_{q}}{[3+k]_{q}}[3]_{q}\left(1+[2]_{q} \lambda\right)} \\
& -\frac{|\gamma|(1-\delta) b^{2}}{2 \frac{[1+k]_{q}}{[3+k]_{q}}[3]_{q}\left(1+[2]_{q} \lambda\right)} \\
= & \frac{|\gamma|^{2}(1-\delta)^{2}}{\left\{\frac{[1+k]_{q}}{[2+k]_{q}}[2]_{q}\left(1+[1]_{q} \lambda\right)\right\}^{2}}\left\{|1-\beta|-\frac{\Theta_{2}^{2}}{2|\gamma|(1-\delta) \frac{[1+k]_{q}}{[3+k]_{q}}[3]_{q}\left(1+[2]_{q} \lambda\right)}\right\} b^{2} \\
& +\frac{2|\gamma|(1-\delta)}{\frac{[1+k]_{q}}{[3+k]_{q}}[3]_{q}\left(1+[2]_{q} \lambda\right)}=\psi(b) .
\end{aligned}
$$

For $b \in[0,2]$,

$$
\begin{equation*}
\psi^{\prime}(b)=\frac{2|\gamma|^{2}(1-\delta)^{2}}{\left\{\frac{[1+k]_{q}}{[2+k]_{q}}[2]_{q}\left(1+[1]_{q} \lambda\right)\right\}^{2}}\left\{|1-\beta|-\frac{\left\{\frac{[1+k]_{q}}{[2+k]_{q}}[2]_{q}\left(1+[1]_{q} \lambda\right)\right\}^{2}}{2|\gamma|(1-\delta) \frac{[1+k]_{q}}{[3+k]_{q}}[3]_{q}\left(1+[2]_{q} \lambda\right)}\right\} b \tag{3.26}
\end{equation*}
$$

implies that there is a critical point at $\psi^{\prime}(b)=0$. Clearly,

$$
\begin{equation*}
\psi^{\prime}(b)<0, \quad \text { if } \quad|1-\beta| \in\left[0, \frac{\left\{\frac{[1+k]_{q}}{[2+k]_{q}}[2]_{q}\left(1+[1]_{q} \lambda\right)\right\}^{2}}{2|\gamma|(1-\delta) \frac{[1+k]_{q}}{[3+k]_{q}}[3]_{q}\left(1+[2]_{q} \lambda\right)}\right) \tag{3.27}
\end{equation*}
$$

thus, the function $\psi(b)$ is strictly a decreasing function of $|1-\beta| \in$ $\left[0, \frac{\left\{\frac{[1+k]_{q}}{[2+]_{q}}[2]_{q}\left(1+[1]_{q} \lambda\right)\right\}^{2}}{2|\gamma|(1-\delta) \frac{[1+k]_{q}}{[3+k]_{q}}[3]_{q}\left(1+[2]_{q} \lambda\right)}\right)$, therefore,

$$
\begin{equation*}
\max \{\psi(b): b \in[0,2]\}=\psi(0)=\frac{2|\gamma|(1-\delta)}{\frac{[1+k]_{q}}{[3+k]_{q}}[3]_{q}\left(1+[2]_{q} \lambda\right)} \tag{3.28}
\end{equation*}
$$

Likewise for

$$
\begin{equation*}
\psi^{\prime}(b) \geqq 0,|1-\beta| \in\left[\frac{\left\{\frac{[1+k]_{q}}{[2+k]_{q}}[2]_{q}\left(1+[1]_{q} \lambda\right)\right\}^{2}}{2|\gamma|(1-\delta) \frac{[1+k]_{q}}{[3+k]_{q}}[3]_{q}\left(1+[2]_{q} \lambda\right)}, 0\right) \tag{3.29}
\end{equation*}
$$

implies that function $\psi(b)$ is an increasing function of $|1-\beta| \in$ $\left[\frac{\left\{[1+k]_{q}[2]_{q}\left(1+[1]_{q} \lambda\right)\right\}^{2}}{2|\gamma| k \left\lvert\,(1-\delta) \frac{[1+k]_{q}}{[3+k]_{q}}[3]_{q}\left(1+[2]_{q} \lambda\right)\right.}, 0\right)$, therefore,

$$
\begin{equation*}
\max \{\psi(b): b \in[0,2]\}=\psi(2)=\frac{4|\gamma|^{2}(1-\delta)^{2}|1-\beta|}{\left\{\frac{[1+k]_{q}}{[2+k]_{q}}[2]_{q}\left(1+[1]_{q} \lambda\right)\right\}^{2}} \tag{3.30}
\end{equation*}
$$

hence the proof is complete.

Acknowledgements. The author is most thankful to the reviewer(s) for their valuable suggestions.

References

[1] H. Aldweby and M. A. Darus, A note on q-integral, Elect. Notes Discrete Math. 67(6) (2018), 25-30. https://doi.org/10.1016/j.endm.2018.05.005
[2] J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. Math. Second Series 17(1) (1915), 12-22.
https://doi.org/10.2307/2007212
[3] M. H. Annaby and Z. S. Mansour, q-Fractional Calculus and Equations, Springer Science+Business Media, New York, 2012.
https://doi.org/10.1007/978-3-642-30898-7
[4] A. Aral, V. Gupta and R. P. Agarwal, Applications of q-Calculus in Operator Theory, Springer Science+Business Media, New York, 2013.
https://doi.org/10.1007/978-1-4614-6946-9_1
[5] S. D. Bernardi, Convex and starlike functions, Trans. Amer. Math. Soc. 135(51) (1969), 429-446. https://doi.org/10.1090/S0002-9947-1969-0232920-2
[6] D. A. Brannan and J. G. Clunie (Eds.), Aspects of Contemporary Complex Analysis, Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham, July 1-20, 1979, Academic Press, New York and London, 1980.
[7] S. Bulut, Certain subclass of analytic and bi-univalent function involving the q-derivative operator, Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. 66(1) (2017), 108-114. https://doi.org/10.1501/Commua1_0000000780
[8] M. Fekete and G. Szegö, Eine bemerkung uber ungerade schlichte funktionen, J. Lond. Math. Soc. 8 (1933), 85-89. https://doi.org/10.1112/jlms/s1-8.2.85
[9] B. A. Frasin, Coefficient bounds for certain classes of bi-univalent functions, Hacettepe J. Math. Stat. 43(3) (2014), 383-389.
[10] A. W. Goodman, Univalent Functions (vol. I © II), Mariner Publishing Co. Inc., Tampa, Florida, 1983.
[11] F. H. Jackson: On q-functions and a certain difference operator, Trans. Roy. Soc. Edinb. 46(2) (1908), 253-281. https://doi.org/10.1017/S0080456800002751
[12] F. H. Jackson, On q-difference equation, Amer. J. Math. 32(4) (1910), 305-314. https://doi.org/10.2307/2370183
[13] F. H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math. 41 (1910), 193-203.
[14] V. Kac and P. Cheung, Quantum Calculus, Springer Science+Business Media, New York, 2002. https://doi.org/10.1007/978-1-4613-0071-7
[15] A. O. Lasode and T. O. Opoola, On a generalized class of bi-univalent functions defined by subordination and q-derivative operator, Open J. Math. Anal. 5 (2021), 46-52. https://doi.org/10.30538/psrp-oma2021.0092
[16] A. O. Lasode and T. O. Opoola, Fekete-Szegö estimates and second Hankel determinant for a generalized subfamily of analytic functions defined by q-differential operator, Gulf J. Math. 11(2) (2021), 36-43. https://gjom.org/index.php/gjom/article/view/583
[17] A. O. Lasode and T. O. Opoola, Some investigations on a class of analytic and univalent functions involving q-differentiation, Eur. J. Math. Anal. 2(12) (2022), 1-9. https://doi.org/10.28924/ada/ma.2.12
[18] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63-68. https://doi.org/10.1090/S0002-9939-1967-0206255-1
[19] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16(4) (1965), 755-758. https://doi.org/10.1090/S0002-9939-1965-0178131-2
[20] R. J. Libera and E. J. Zlotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc. 85(2) (1982), 225-230.
https://doi.org/10.1090/S0002-9939-1982-0652447-5
[21] E. P. Mazi and T. O. Opoola, On some subclasses of bi-univalent functions associating pseudo-starlike functions with Sakaguchi type functions, Gen. Math. J. 25(1) (2017), 85-95.
[22] E. P. Mazi and T. O. Opoola: A newly defined subclass of bi-univalent functions satisfying subordinate conditions, Mathematica 84(2) (2019), 146-155.
https://doi.org/10.24193/mathcluj.2019.2.05
[23] A. Motamednezhad and S. Salehian, New subclass of bi-univalent functions by ($p ; q$)-derivative operator, Honam Math. J. 41(2) (2019), 381-390.
https://doi.org/10.5831/HMJ.2019.41.2.381
[24] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Arch. Ration. Mech. Anal. 32 (1969), 100-112. https://doi.org/10.1007/BF00247676
[25] M. Sabil, Q. Z. Ahmad, B. Khan, M. Tahir and N. Khan, Generalisation of certain subclasses of analytic and biunivalent functions, Maejo Int. J. Sci. Technol. 13(1) (2019), 1-9.
[26] T. G. Shaba, Subclass of bi-univalent functions satisfying subordinate conditions defined by Frasin differential operator, Turkish J. Ineq. 4(2) (2020), 50-58.
[27] T. G. Shaba and A. K. Wanas, Coefficient bounds for a new family of bi-univalent functions associated with (U, V)-Lucas polynomials, Int. J. Nonlinear Anal. Appl. 13(1) (2022), 615-626. https://doi.org/10.22075/IJNAA.2021.23927.2639
[28] H. M. Srivastava, Operators of basic (or q-)calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. Sci. 44 (2020), 327-344.
https://doi.org/10.1007/s40995-019-00815-0
[29] H. M. Srivastava and D. Bansal, Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egypt. Math. Soc. 23 (2015), 242-246.
https://doi.org/10.1016/j.joems.2014.04.002
[30] H. M. Srivastava, S. S. Eker and R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Fac. Sci. Math. Univ. Niš, Serbia 29(8) (2015), 1839-1845. https://doi.org/10.2298/FIL1508839S
[31] H. M. Srivastava, A. K. Mishra and P. Gochhayt, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Letters 23 (2010), 1188-1192. https://doi.org/10.1016/j.aml.2010.05.009
[32] H. M. Srivastava, A. K. Wanas and R. Srivastava, Applications of the q-Srivastava-Attiya operator involving a certain family of bi-univalent functions associated with the Horadam polynomials, Symmetry 13 (2021), Art. ID. 1230, 14 pp. https://doi.org/10.3390/sym13071230
[33] D. L. Tan, Coefficient estimates for bi-univalent functions, Chinese Ann. Math. Ser. A 5(5) (1984), 559-568.
[34] A. K. Wanas, New families of bi-univalent functions governed by Gegenbauer polynomials, Earthline J. Math. Sci. 7(2) (2021), 403-427. https://doi.org/10.34198/ejms.7221.403427

Estimates for a Generalized Class of Analytic and Bi-univalent Functions

[35] A. K. Wanas and L. I. Cotirla, Applications of ($M-N$)-Lucas polynomials on a certain family of bi-univalent functions, Mathematics 10 (2022), Art. ID. 595, 11 pp . https://doi.org/10.3390/math10040595

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted, use, distribution and reproduction in any medium, or format for any purpose, even commercially provided the work is properly cited.

[^0]: Received: June 9, 2022; Accepted: June 29, 2022
 2020 Mathematics Subject Classification: 30C45, 30C50, 30C55.
 Keywords and phrases: analytic function, bi-univalent function, q-calculus, Bernardi q-integral operator, Fekete-Szegö functional.

