

Coefficient Bounds for New Subclasses of m-Fold Symmetric Holomorphic Bi-Univalent Functions

Ali Mohammed Ramadhan¹ and Najah Ali Jiben Al-Ziadi^{2,*}

- ¹ Department of Mathematics, College of Education, University of Al-Qadisiyah, Diwaniya, Iraq e-mail: edu-math.post15@qu.edu.iq
- ² Department of Mathematics, College of Education, University of Al-Qadisiyah, Diwaniya, Iraq e-mail: najah.ali@qu.edu.iq

Abstract

In the present paper, we investigate two new subclasses $\mathcal{AR}_{\Sigma_m}(\delta,\lambda;\alpha)$ and $\mathcal{AR}_{\Sigma_m}(\delta,\lambda;\beta)$ of Σ_m consisting of m-fold symmetric holomorphic bi-univalent functions in the open unit disk Δ . For functions from the two classes described here, we obtain estimates on the initial bounds $|d_{m+1}|$ and $|d_{2m+1}|$. In addition, we get new special cases for our results.

1. Introduction

Let Δ be the unit disk $\{s:s\in\mathbb{C} \text{ and } |s|<1\}$, symbolized by \mathcal{A} the class of functions holomorphic in Δ , fulfilling the condition

$$k(0) = k'(0) - 1 = 0.$$

Then each function k in \mathcal{A} has the Taylor-Maclaurin expansion

$$k(s) = s + \sum_{n=2}^{\infty} d_n s^n.$$
 (1.1)

Further, by S we shall symbolize the class of all functions in A which are univalent in Δ .

The Koebe one-quarter theorem [4] shows that the image of Δ under every function k from S contains a disk of radius 1/4. As a result, any univalent function has an inverse

Received: June 17, 2022; Accepted: June 30, 2022

2020 Mathematics Subject Classification: 30C45, 30C50.

Keywords and phrases: holomorphic function, m-fold symmetric holomorphic function, bi-univalent function, m-fold symmetric holomorphic bi-univalent function, coefficient bounds.

 k^{-1} which fulfilled

$$k^{-1}(k(s)) = s \qquad (s \in \Delta)$$

and

$$k(k^{-1}(r)) = r \quad (|r| < r_0(k); r_0(k) \ge \frac{1}{4}),$$

where

$$k^{-1}(r) = h(r) = r - d_2 r^2 + (2d_2^2 - d_3)r^3 - (5d_2^3 - 5d_2d_3 + d_4)r^4 + \cdots$$
 (1.2)

A function $k \in \mathcal{A}$ is said to be bi-univalent in Δ if both k(s) and $k^{-1}(s)$ are univalent in Δ . We symbolize by Σ the class of all bi-univalent functions in Δ given by the Taylor-Maclaurin series expansion (1.1). Lewin [7] discussed the class of bi-univalent functions Σ and gotten a bound $|d_2| \leq 1.51$. Motivated by the work of Lewin [7], Brannan and Clunie [3] hypothesised that $|d_2| \leq \sqrt{2}$. Some examples of bi-univalent functions are $\frac{s}{1-s}$, $-\log(1-s)$ and $\frac{1}{2}\log\left(\frac{1+s}{1-s}\right)$ (see also Srivastava et al. [15]). The coefficient estimate problem involving the bound of $|d_n|$ $(n \in \mathbb{N} \setminus \{1,2\})$ for each $f \in \Sigma$ is still an open problem [15].

For each function $f \in \mathcal{S}$, the function

$$g(s) = \sqrt[m]{k(s^m)} \quad (s \in \Delta, m \in \mathbb{N})$$
 (1.3)

is univalent and maps the unit disk Δ into a region with m-fold symmetry. A function is told to be m-fold symmetric (see [5, 10]) if it has the following normalized form:

$$k(s) = s + \sum_{n=1}^{\infty} d_{mn+1} s^{mn+1} \quad (s \in \Delta, m \in \mathbb{N}).$$
 (1.4)

We symbolize by S_m the class of m-fold symmetric holomorphic univalent functions in Δ , which are normalized by the series expansion (1.4). In fact, the functions in the class S are one-fold symmetric (that is, m = 1).

In [16] Srivastava et al. defined m-fold symmetric holomorphic bi-univalent function analogues to the concept of m-fold symmetric holomorphic univalent functions. They gave some important results, such as each function $k \in \Sigma$ generates an m-fold symmetric holomorphic bi-univalent function for each $m \in \mathbb{N}$, in their study. Furthermore, for the normalized form of k given by (1.4), they obtained the series expansion for k^{-1} as

follows:

$$k^{-1}(r) = h(r) = r - d_{m+1}r^{m+1} + \left[(m+1)d_{m+1}^2 - d_{2m+1} \right]r^{2m+1} - \left[\frac{1}{2}(m+1)(3m+2)d_{m+1}^3 - (3m+2)d_{m+1}d_{2m+1} + d_{3m+1} \right]r^{3m+1} + \cdots, (1.5)$$

where $k^{-1} = h$. We denote by Σ_m the class of m-fold symmetric holomorphic biunivalent functions in Δ . For m = 1, formula (1.5) coincides with formula (1.2) of the class Σ .

Recently, many penmen investigated bounds for various subclasses of m-fold symmetric holomorphic bi-univalent functions (see [1, 2, 6, 11, 12, 13, 14, 17]).

The aim of this paper is to submit two new subclasses of the function class biunivalent functions in which both k and k^{-1} are m-fold symmetric holomorphic biunivalent functions and derive bounds on initial coefficients $|d_{m+1}|$ and $|d_{2m+1}|$ for functions in each of these new subclasses. Several related classes are also investigated and connections to earlier known outcomes are made.

We employ the following lemma [4] of Caratheodary class to deduce our main results.

Lemma 1.1. If $p \in \mathcal{P}$, then $|c_n| \leq 2$ for each $n \in \mathbb{N}$, where \mathcal{P} is the family of all functions p, holomorphic in Δ , for which

$$R(p(s)) > 0$$
 where $p(s) = 1 + c_1 s + c_2 s^2 + \cdots$ $(s \in \Delta)$.

2. Coefficient Bounds for the Function Class $\mathcal{AR}_{\Sigma_m}(\delta,\lambda;\alpha)$

Definition 2.1. A function $k(s) \in \Sigma_m$ given by (1.4) is told to be in the class $\mathcal{AR}_{\Sigma_m}(\delta, \lambda; \alpha)$ if the following conditions are fulfilled:

$$\left| arg \left[(1 - \delta) \left(\frac{sk'(s)}{\lambda sk'(s) + (1 - \lambda)k(s)} \right) + \delta \left(\frac{sk''(s) + k'(s)}{\lambda sk''(s) + k'(s)} \right) \right] \right| < \frac{\alpha\pi}{2} (s \in \Delta)$$
 (2.1)

and

$$\left| arg \left[(1 - \delta) \left(\frac{rh'(r)}{\lambda rh'(r) + (1 - \lambda)h(r)} \right) + \delta \left(\frac{rh''(r) + h'(r)}{\lambda rh''(r) + h'(r)} \right) \right] \right| < \frac{\alpha \pi}{2} (r \in \Delta), \quad (2.2)$$

where the function $h = k^{-1}$ is given by (1.5) and $(0 \le \delta \le 1; 0 \le \lambda < 1; 0 < \alpha \le 1)$.

Theorem 2.1. Let the function k(s), given by (1.4), be in the class $\mathcal{AR}_{\Sigma_m}(\delta, \lambda; \alpha)$. Then

$$|d_{m+1}| \le \frac{2\alpha}{m\sqrt{|2\alpha(1-\lambda)(1-\lambda+\delta m-2\delta \lambda m-\delta \lambda m^2)+(1-\alpha)(1-\lambda)^2(1+\delta m)^2|}}$$
 (2.3)

and

$$|d_{2m+1}| \le \frac{2\alpha^2(m+1)}{m^2(1-\lambda)^2(1+\delta m)^2} + \frac{\alpha}{m(1-\lambda)(1+2\delta m)}.$$
 (2.4)

Proof. Let $k \in \mathcal{AR}_{\Sigma_m}(\delta, \lambda; \alpha)$. Then

$$(1 - \delta) \left(\frac{sk'(s)}{\lambda sk'(s) + (1 - \lambda)k(s)} \right) + \delta \left(\frac{sk''(s) + k'(s)}{\lambda sk''(s) + k'(s)} \right) = [p(s)]^{\alpha}$$
 (2.5)

and

$$(1 - \delta) \left(\frac{rh'(r)}{\lambda rh'(r) + (1 - \lambda)h(r)} \right) + \delta \left(\frac{rh''(r) + h'(r)}{\lambda rh''(r) + h'(r)} \right) = [q(r)]^{\alpha}, \quad (2.6)$$

where $h = k^{-1}$ and p(s), q(r) in \mathcal{P} and have the forms

$$p(s) = 1 + p_m s^m + p_{2m} s^{2m} + p_{3m} s^{3m} + \cdots$$
 (2.7)

and

$$q(r) = 1 + q_m r^m + q_{2m} r^{2m} + q_{3m} r^{3m} + \cdots$$
 (2.8)

It follows from (2.5) and (2.6) that

$$m(1-\lambda)(1+\delta m)d_{m+1} = \alpha p_m, \tag{2.9}$$

$$2m(1-\lambda)(1+2\delta m)d_{2m+1}-m(1-\lambda)(1+\lambda m)(1+2\delta m+\delta m^2)d_{m+1}^2$$

$$= \alpha p_{2m} + \frac{1}{2}\alpha(\alpha - 1)p_m^2, \tag{2.10}$$

$$-m(1-\lambda)(1+\delta m)d_{m+1} = \alpha q_m,$$
 (2.11)

and

$$m(1-\lambda)(1+2m-\lambda m+2\delta m+3\delta m^2-2\delta \lambda m^2-\delta \lambda m^3)d_{m+1}^2$$

$$-2m(1-\lambda)(1+2\delta m)d_{2m+1}$$

$$=\alpha q_{2m}+\frac{1}{2}\alpha(\alpha-1)q_m^2.$$
 (2.12)

From (2.9) and (2.11), we get

$$p_m = -q_m \tag{2.13}$$

and

$$2m^{2}(1-\lambda)^{2}(1+\delta m)^{2}d_{m+1}^{2} = \alpha^{2}(p_{m}^{2}+q_{m}^{2}). \tag{2.14}$$

From (2.10), (2.12) and (2.14), we find

$$2m^{2}(1-\lambda)(1-\lambda+\delta m-2\delta\lambda m-\delta\lambda m^{2})d_{m+1}^{2}$$

$$=\alpha(p_{2m}+q_{2m})+\frac{\alpha(\alpha-1)}{2}(p_{m}^{2}+q_{m}^{2})$$

$$=\alpha(p_{2m}+q_{2m})+\frac{\alpha(\alpha-1)}{2}(m(1-\lambda)(1+\delta m))^{2}d_{m+1}^{2}.$$
(2.15)

Therefore, we have

$$d_{m+1}^2 = \frac{\alpha^2 (p_{2m} + q_{2m})}{2\alpha m^2 (1 - \lambda)(1 - \lambda + \delta m - 2\delta \lambda m - \delta \lambda m^2) + (1 - \alpha)m^2 (1 - \lambda)^2 (1 + \delta m)^2}.$$
 (2.16)

Stratifying Lemma 1.1 for the coefficients p_{2m} and q_{2m} , we get

$$|d_{m+1}| \le \frac{2\alpha}{m\sqrt{|2\alpha(1-\lambda)(1-\lambda+\delta m-2\delta \lambda m-\delta \lambda m^2)+(1-\alpha)(1-\lambda)^2(1+\delta m)^2|}}.(2.17)$$

The last inequality gives the desired estimate on $|d_{m+1}|$ given in (2.3).

Next, the bound on $|d_{2m+1}|$ is then found by subtracting (2.12) from (2.10).

$$4m(1-\lambda)(1+2\delta m)d_{2m+1} - (2m(m+1)(1-\lambda)(1+2\delta m))d_{m+1}^{2}$$

$$= \alpha(p_{2m} - q_{2m}) + \frac{\alpha(\alpha-1)}{2}(p_{m}^{2} - q_{m}^{2})$$
(2.18)

By using (2.13), (2.14) and (2.18), we get

$$d_{2m+1} = \frac{\alpha^2(m+1)(p_m^2 + q_m^2)}{4m^2(1-\lambda)^2(1+\delta m)^2} + \frac{\alpha(p_{2m} - q_{2m})}{4m(1-\lambda)(1+2\delta m)}.$$
 (2.19)

Stratifying Lemma 1.1 once again for the coefficients p_m , p_{2m} and q_m , q_{2m} , we get

$$|d_{2m+1}| \le \frac{2\alpha^2(m+1)}{m^2(1-\lambda)^2(1+\delta m)^2} + \frac{\alpha}{m(1-\lambda)(1+2\delta m)}.$$

This proves Theorem 2.1.

3. Coefficient Bounds for the Function Class $\mathcal{AR}_{\Sigma_m}(\delta,\lambda;\boldsymbol{\beta})$

Definition 3.1. A function $k(s) \in \Sigma_m$ given by (1.4) is told to be in the class $\mathcal{AR}_{\Sigma_m}(\delta, \lambda; \beta)$ if the following conditions are fulfilled:

$$Re\left((1-\delta)\left(\frac{sk'(s)}{\lambda sk'(s) + (1-\lambda)k(s)}\right) + \delta\left(\frac{sk''(s) + k'(s)}{\lambda sk''(s) + k'(s)}\right)\right) > \beta \ (s \in \Delta) \quad (3.1)$$

and

$$Re\left((1-\delta)\left(\frac{rh^{'}(r)}{\lambda rh^{'}(r)+(1-\lambda)h(r)}\right)+\delta\left(\frac{rh^{''}(r)+h^{'}(r)}{\lambda rh^{''}(r)+h^{'}(r)}\right)\right)>\beta\ (r\in\Delta),\ (3.2)$$

where the function $h = k^{-1}$ is given by (1.5) and $(0 \le \delta \le 1; 0 \le \lambda < 1; 0 \le \beta < 1)$.

Theorem 3.1. Let the function k(s), given by (1.4), be in the class $\mathcal{AR}_{\Sigma_m}(\delta, \lambda; \beta)$. Then

$$|d_{m+1}| \le \frac{1}{m} \sqrt{\frac{2(1-\beta)}{|(1-\lambda)(1-\lambda+\delta m-2\delta \lambda m-\delta \lambda m^2)|}}$$
(3.3)

and

$$|d_{2m+1}| \le \frac{2(1-\beta)^2(m+1)}{m^2(1-\lambda)^2(1+\delta m)^2} + \frac{(1-\beta)}{m(1-\lambda)(1+2\delta m)}.$$
 (3.4)

Proof. It follows from (3.1) and (3.2) that there exists $p, q \in \mathcal{P}$ such that

$$(1 - \delta) \left(\frac{sk'(s)}{\lambda sk'(s) + (1 - \lambda)k(s)} \right) + \delta \left(\frac{sk''(s) + k'(s)}{\lambda sk''(s) + k'(s)} \right) = \beta + (1 - \beta)p(s) \quad (3.5)$$

and

$$(1 - \delta) \left(\frac{rh'(r)}{\lambda rh'(r) + (1 - \lambda)h(r)} \right) + \delta \left(\frac{rh''(r) + h'(r)}{\lambda rh''(r) + h'(r)} \right) = \beta + (1 - \beta)q(r), \quad (3.6)$$

where p(s) and q(r) have the forms (2.7) and (2.8). It follows from (3.5) and (3.6), we find

$$m(1 - \lambda)(1 + \delta m)d_{m+1} = (1 - \beta)p_m, \tag{3.7}$$

$$2m(1-\lambda)(1+2\delta m)d_{2m+1}-m(1-\lambda)(1+\lambda m)(1+2\delta m+\delta m^2)d_{m+1}^2$$

$$= (1 - \beta)p_{2m} \tag{3.8}$$

$$-m(1-\lambda)(1+\delta m)d_{m+1} = (1-\beta)q_m, \tag{3.9}$$

and

$$m(1-\lambda)(1+2m-\lambda m+2\delta m+3\delta m^2-2\delta \lambda m^2-\delta \lambda m^3)d_{m+1}^2$$
$$-2m(1-\lambda)(1+2\delta m)d_{2m+1}$$
$$=(1-\beta)q_{2m}. \tag{3.10}$$

From (3.7) and (3.9), we get

$$p_m = -q_m \tag{3.11}$$

and

$$2m^{2}(1-\lambda)^{2}(1+\delta m)^{2}d_{m+1}^{2} = (1-\beta)^{2}(p_{m}^{2}+q_{m}^{2}). \tag{3.12}$$

Adding (3.8) and (3.10), we get

$$2m^{2}(1-\lambda)(1-\lambda+\delta m-2\delta\lambda m-\delta\lambda m^{2})d_{m+1}^{2}=(1-\beta)(p_{2m}+q_{2m}). \quad (3.13)$$

Therefore, we obtain

$$d_{m+1}^2 = \frac{(1-\beta)(p_{2m} + q_{2m})}{2m^2(1-\lambda)(1-\lambda+\delta m - 2\delta\lambda m - \delta\lambda m^2)}.$$
 (3.14)

Stratifying Lemma 1.1 for coefficients p_{2m} and q_{2m} , we readily get

$$|d_{m+1}| \leq \frac{1}{m} \sqrt{\frac{2(1-\beta)}{|(1-\lambda)(1-\lambda+\delta m-2\delta \lambda m-\delta \lambda m^2)|}}.$$

This gives the desired estimate on $|d_{m+1}|$ given by (3.3).

Next, the bound on $|d_{2m+1}|$ is then found by subtracting (3.10) from (3.8).

$$4m(1-\lambda)(1+2\delta m)d_{2m+1} - (2m(m+1)(1-\lambda)(1+2\delta m))d_{m+1}^{2}$$

$$= (1-\beta)(p_{2m} - q_{2m}). \tag{3.15}$$

Or equivalently

$$d_{2m+1} = \frac{(m+1)}{2}d_{m+1}^2 + \frac{(1-\beta)(p_{2m} - q_{2m})}{4m(1-\lambda)(1+2\delta m)}.$$
 (3.16)

By substituting the value of d_{m+1}^2 from (3.12), we find

$$d_{2m+1} = \frac{(1-\beta)^2(m+1)(p_m^2 + q_m^2)}{4m^2(1-\lambda)^2(1+\delta m)^2} + \frac{(1-\beta)(p_{2m} - q_{2m})}{4m(1-\lambda)(1+2\delta m)}.$$
 (3.17)

By using Lemma 1.1 once again for the coefficients p_{2m} , p_m , q_{2m} and q_m , we get

$$|d_{2m+1}| \le \frac{2(1-\beta)^2(m+1)}{m^2(1-\lambda)^2(1+\delta m)^2} + \frac{(1-\beta)}{m(1-\lambda)(1+2\delta m)}.$$

This proves Theorem 3.1.

4. Corollaries and Consequences

If we set $\delta = 1$ in Definition 2.1 and Definition 3.1, then the classes $\mathcal{AR}_{\Sigma_m}(\delta, \lambda; \alpha)$ and $\mathcal{AR}_{\Sigma_m}(\delta, \lambda; \beta)$ shorten to the classes $\mathcal{AR}_{\Sigma_m}(\lambda; \alpha)$ and $\mathcal{AR}_{\Sigma_m}(\lambda; \beta)$ and thus, Theorem 2.1 and Theorem 3.1 shorten to Corollary 4.1 and Corollary 4.2, respectively.

The classes $\mathcal{AR}_{\Sigma_m}(\lambda; \alpha)$ and $\mathcal{AR}_{\Sigma_m}(\lambda; \beta)$ are respectively defined as follows:

Definition 4.1. A function $k(s) \in \Sigma_m$ given by (1.4) is told to be in the class $\mathcal{AR}_{\Sigma_m}(\lambda; \alpha)$ if the following conditions are fulfilled:

$$\left| arg\left(\frac{sk^{''}(s) + k^{'}(s)}{\lambda sk^{''}(s) + k^{'}(s)} \right) \right| < \frac{\alpha\pi}{2} \quad \text{and} \quad \left| arg\left(\frac{rh^{''}(r) + h^{'}(r)}{\lambda rh^{''}(r) + h^{'}(r)} \right) \right| < \frac{\alpha\pi}{2} \quad (s, r \in \Delta),$$

where the function $h = k^{-1}$ is given by (1.5) and $(0 \le \lambda < 1; 0 < \alpha \le 1)$.

Definition 4.2. A function $k(s) \in \Sigma_m$ given by (1.4) is told to be in the class $\mathcal{AR}_{\Sigma_m}(\lambda; \beta)$ if the following conditions are fulfilled:

$$Re\left(\frac{sk^{''}(s)+k^{'}(s)}{\lambda sk^{''}(s)+k^{'}(s)}\right) > \beta$$
 and $Re\left(\frac{rh^{''}(r)+h^{'}(r)}{\lambda rh^{''}(r)+h^{'}(r)}\right) > \beta$ $(s,r \in \Delta)$

where the function $h = k^{-1}$ is given by (1.5) and $(0 \le \lambda < 1; 0 \le \beta < 1)$.

Corollary 4.1. Let k(s) given by (1.4) be in the class $\mathcal{AR}_{\Sigma_m}(\lambda; \alpha)$. Then

$$|d_{m+1}| \le \frac{2\alpha}{m\sqrt{|2\alpha(1-\lambda)[(m+1)-\lambda(m+1)^2] + (1-\alpha)(1-\lambda)^2(m+1)^2|}}$$

and

$$|d_{2m+1}| \leq \frac{2\alpha^2}{m^2(1-\lambda)^2(m+1)} + \frac{\alpha}{m(1-\lambda)(1+2m)}.$$

Corollary 4.2. Let k(s) given by (1.4) be in the class $\mathcal{AR}_{\Sigma_m}(\lambda;\beta)$. Then

$$|d_{m+1}| \le \frac{1}{m} \sqrt{\frac{2(1-\beta)}{|(1-\lambda)[(m+1)-\lambda(m+1)^2]|}}$$

and

$$|d_{2m+1}| \leq \frac{2(1-\beta)^2}{m^2(1-\lambda)^2(m+1)} + \frac{(1-\beta)}{m(1-\lambda)(1+2m)}.$$

For one-fold symmetric holomorphic bi-univalent functions, the classes $\mathcal{AR}_{\Sigma_m}(\delta,\lambda;\alpha)$ and $\mathcal{AR}_{\Sigma_m}(\delta,\lambda;\beta)$ shorten to the classes $\mathcal{AR}_{\Sigma}(\delta,\lambda;\alpha)$ and $\mathcal{AR}_{\Sigma}(\delta,\lambda;\beta)$ and thus, Theorem 2.1 and Theorem 3.1 shorten to Corollary 4.2 and Corollary 4.3, respectively.

The classes $\mathcal{AR}_{\Sigma}(\delta, \lambda; \alpha)$ and $\mathcal{AR}_{\Sigma}(\delta, \lambda; \beta)$ are defined in the following way:

Definition 4.3. A function $k(s) \in \Sigma$ given by (1.1) is told to be in the class $\mathcal{AR}_{\Sigma}(\delta, \lambda; \alpha)$ if the following conditions are fulfilled:

$$\left| arg \left[(1 - \delta) \left(\frac{rk'(s)}{\lambda sk'(s) + (1 - \lambda)k(s)} \right) + \delta \left(\frac{sk''(s) + k'(s)}{\lambda sk''(s) + k'(s)} \right) \right] \right| < \frac{\alpha \pi}{2} \quad (s \in \Delta)$$

and

$$\left| arg \left[(1 - \delta) \left(\frac{rh^{'}(r)}{\lambda rh^{'}(r) + (1 - \lambda)h(r)} \right) + \delta \left(\frac{rh^{''}(r) + h^{'}(r)}{\lambda rh^{''}(r) + h^{'}(r)} \right) \right] \right| < \frac{\alpha \pi}{2} \quad (r \in \Delta),$$

where the function $h = k^{-1}$ is given by (1.2) and $(0 \le \delta \le 1; 0 \le \lambda < 1; 0 < \alpha \le 1)$.

Definition 4.4. A function $k(s) \in \Sigma$ given by (1.1) is told to be in the class $\mathcal{AR}_{\Sigma}(\delta, \lambda; \beta)$ if the following conditions are fulfilled:

$$Re\left((1-\delta)\left(\frac{sk'(s)}{\lambda sk'(s) + (1-\lambda)k(s)}\right) + \delta\left(\frac{sk''(s) + k'(s)}{\lambda sk''(s) + k'(s)}\right)\right) > \beta \qquad (s \in \Delta)$$

and

$$Re\left((1-\delta)\left(\frac{rh^{'}(r)}{\lambda rh^{'}(r)+(1-\lambda)h(r)}\right)+\delta\left(\frac{rh^{''}(r)+h^{'}(r)}{\lambda rh^{''}(r)+h^{'}(r)}\right)\right)>\beta\qquad(r\in\Delta),$$

where the function $h = k^{-1}$ is given by (1.2) and $(0 \le \delta \le 1; 0 \le \lambda < 1; 0 \le \beta < 1)$.

Corollary 4.3. Let k(s) given by (1.1) be in the class $\mathcal{AR}_{\Sigma}(\delta, \lambda; \alpha)$. Then

$$|d_2| \le \frac{2\alpha}{\sqrt{|2\alpha(1-\lambda)((1-\lambda)(1+\delta)-2\delta\lambda)+(1-\alpha)(1-\lambda)^2(1+\delta)^2|}}$$

and

$$|d_3| \le \frac{4\alpha^2}{(1-\lambda)^2(1+\delta)^2} + \frac{\alpha}{(1-\lambda)(1+2\delta)^2}$$

Corollary 4.4. Let k(s) given by (1.1) be in the class $\mathcal{AR}_{\Sigma}(\delta, \lambda; \beta)$. Then

$$|d_2| \le \sqrt{\frac{2(1-\beta)}{|(1-\lambda)[(1-\lambda)(1+\delta)-2\delta\lambda]|}}$$

and

$$|d_3| \le \frac{4(1-\beta)^2}{(1-\lambda)^2(1+\delta)^2} + \frac{(1-\beta)}{(1-\lambda)(1+2\delta)}.$$

If we set $\delta=1$ and m=1 in Definition 2.1 and Definition 3.1, then the classes $\mathcal{AR}_{\Sigma_m}(\delta,\lambda;\alpha)$ and $\mathcal{AR}_{\Sigma_m}(\delta,\lambda;\beta)$ shorten to the classes $\mathcal{AR}_{\Sigma}(\lambda;\alpha)$ and $\mathcal{AR}_{\Sigma}(\lambda;\beta)$ and thus, Theorem 2.1 and Theorem 3.1 shorten to Corollary 4.5 and Corollary 4.6, respectively.

The classes $\mathcal{AR}_{\Sigma}(\lambda; \alpha)$ and $\mathcal{AR}_{\Sigma}(\lambda; \beta)$, are respectively defined as follows:

Definition 4.5. A function $k(s) \in \Sigma$ given by (1.1) is told to be in the class $\mathcal{AR}_{\Sigma}(\lambda; \alpha)$ if the following conditions are fulfilled:

$$\left| arg\left(\frac{sk^{''}(s) + k^{'}(s)}{\lambda sk^{''}(s) + k^{'}(s)} \right) \right| < \frac{\alpha\pi}{2} \quad \text{and} \quad \left| arg\left(\frac{rh^{''}(r) + h^{'}(r)}{\lambda rh^{''}(r) + h^{'}(r)} \right) \right| < \frac{\alpha\pi}{2} \quad (s, r \in \Delta),$$

where the function $h = k^{-1}$ is given by (1.2) and $(0 \le \lambda < 1; 0 < \alpha \le 1)$.

Definition 4.6. A function $k(s) \in \Sigma$ given by (1.1) is told to be in the class $\mathcal{AR}_{\Sigma}(\lambda;\beta)$ if the following conditions are fulfilled:

$$Re\left(\frac{sk^{"}(s)+k^{'}(s)}{\lambda sk^{"}(s)+k^{'}(s)}\right) > \beta \text{ and } Re\left(\frac{rh^{"}(r)+h^{'}(r)}{\lambda rh^{"}(r)+h^{'}(r)}\right) > \beta \quad (s,r \in \Delta),$$

where the function $h = k^{-1}$ is given by (1.2) and $(0 \le \lambda < 1; 0 \le \beta < 1)$.

Corollary 4.5. Let k(s) given by (1.1) be in the class $\mathcal{AR}_{\Sigma}(\lambda; \alpha)$. Then

$$|d_2| \leq \frac{\alpha}{\sqrt{|\alpha(1-\lambda)(1-2\lambda) + (1-\alpha)(1-\lambda)^2|}} \ \ and \ \ |d_3| \leq \frac{\alpha^2}{(1-\lambda)^2} + \frac{\alpha}{3(1-\lambda)}.$$

Corollary 4.6. Let k(s) given by (1.1) be in the class $\mathcal{AR}_{\Sigma}(\lambda;\beta)$. Then

$$|d_2| \le \sqrt{\frac{(1-\beta)}{|(1-\lambda)(1-2\lambda)|}} \quad and \quad |d_3| \le \frac{(1-\beta)^2}{(1-\lambda)^2} + \frac{(1-\beta)}{3(1-\lambda)}.$$

Remark 4.1. For m-fold symmetric holomorphic bi-univalent functions:

- 1. Putting $\delta = 0$, in Theorems 2.1 and 3.1, we get the corresponding outcomes given by Altinkaya and Yalçin [1].
- 2. Putting $\delta = 0$ and $\lambda = 0$, in Theorems 2.1 and 3.1, we get the corresponding outcomes given by Altinkaya and Yalçin [1].
- 3. Putting $\delta = 1$ and $\lambda = 0$, in Theorems 2.1 and 3.1, we get the corresponding outcomes given by Kumar et al. [6].
- 4. Putting $\lambda = 0$, in Theorems 2.1 and 3.1, we get the corresponding outcomes given by Sivasubramanlan and Sivakumar [12].

Remark 4.2. For 1-fold symmetric holomorphic bi-univalent functions:

- 1. Putting $\delta = 1$ and $\lambda = 0$, in Theorems 2.1 and 3.1, we get the corresponding outcomes given by Kumar et al. [6].
- 2. Putting $\delta = 0$ and $\lambda = 0$, in Theorems 2.1 and 3.1, we get the corresponding outcomes given by Murugusundaramoorthy et al. [9].
- 3. Putting $\delta = 0$, in Theorems 2.1 and 3.1, we get the corresponding outcomes given by Murugusundaramoorthy et al. [9].
- 4. Putting $\lambda = 0$, in Theorems 2.1 and 3.1, we get the corresponding outcomes given by Li and Wang [8].

References

[1] Ş. Altinkaya and S. Yalçin, Coefficient bounds for certain subclasses of m-fold symmetric bi-univalent functions, *Journal of Mathematics* 2015 (2015), Article ID 241683, 5 pp. https://doi.org/10.1155/2015/241683

- [2] W. G. Atshan and N. A. J. Al-Ziadi, Coefficients bounds for a general subclasses of m-fold symmetric bi-univalent functions, *J. Al-Qadisiyah Comput. Sci. Math.* 9(2) (2017), 33-39. https://doi.org/10.29304/jqcm.2017.9.2.141
- [3] D. Brannan and J. G. Clunie (Eds), Aspects of contemporary complex analysis, (Proceedings of the NATO advanced study institute held at the Univ. of Durham, Durham; July 1-20, 1979), New York, London: Academic Press, 1980.
- [4] P. L. Duren, *Univalent Functions*, Vol. 259 of Grundlehren der Mathematischen Wissenschaften, Springer, New York, NY, USA, 1983.
- W. Koepf, Coefficients of symmetric functions of bounded boundary rotations, *Proc. Amer. Math. Soc.* 105 (1989), 324-329.
 https://doi.org/10.1090/S0002-9939-1989-0930244-7
- [6] T. R. K. Kumar, S. Karthikeyan, S. Vijayakumar and G. Ganapathy, Initial coefficient estimates for certain subclasses of m-fold symmetric bi-univalent functions, *Advances in Dynamical Systems and Applications* 16(2) (2021), 789-800.
- [7] M. Lewin, On a coefficient problem for bi-univalent functions, *Proc. Amer. Math. Soc.* 18 (1967), 63-68. https://doi.org/10.1090/S0002-9939-1967-0206255-1
- [8] X. Li and A. Wang, Two new subclasses of bi-univalent functions, *International Math. Forum* 7(30) (2012), 1495-1504.
- [9] G. Murugusundaramoorthy, N. Magesh and V. Prameela, Coefficient bounds for certain subclasses of bi-univalent functions, *Abstract and Applied Analysis* 2013 (2013), Article ID 573017, 3 pp. https://doi.org/10.1155/2013/573017
- [10] C. Pommerenke, On the coefficients of close-to-convex functions, *Michigan Math. J.* 9 (1962), 259-269. https://doi.org/10.1307/mmj/1028998726
- [11] T. G. Shaba and A. B. Patil, Coefficient estimates for certain subclasses of m-fold symmetric bi-univalent functions associated with pseudu-starlike functions, *Earthline Journal of Mathematical Sciences* 6(2) (2021), 209-223. https://doi.org/10.34198/ejms.6221.209223
- [12] S. Sivasubramanian and R. Sivakumar, Initial coefficient bound for m-fold symmetric biλ-convex functions, *J. Math. Inequalities* 10(3) (2016), 783-791. https://doi.org/10.7153/jmi-10-63
- [13] H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, *Acta Universitatis Apulensis* 41 (2015), 153-164. https://doi.org/10.17114/j.aua.2015.41.12

- [14] H. M. Srivastava, S. Gaboury and F. Ghanim, Initial coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, *Acta Mathematica Scientia* 36(3) (2016), 863-871. https://doi.org/10.1016/S0252-9602(16)30045-5
- [15] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and biunivalent functions, *Appl. Math. Lett.* 23 (2010), 1188-1192. https://doi.org/10.1016/j.aml.2010.05.009
- [16] H. M. Srivastava, S. Sivasubramanian and R. Sivakumar, Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, *Tbilisi Mathematical J.* 7(2) (2014), 1-10. https://doi.org/10.2478/tmj-2014-0011
- [17] A. K. Wanas and H. Tang, Initial coefficient estimates for a classes of m-fold symmetric bi-univalent functions involving Mittag-Leffler function, *Mathematica Moravica* 24(2) (2020), 51-61. https://doi.org/10.5937/MatMor2002051K

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted, use, distribution and reproduction in any medium, or format for any purpose, even commercially provided the work is properly cited.