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Abstract

In the present paper, we investigate two new subclasses ARy (6,4;@) and
ARy, (6,4; B) of Xy, consisting of m-fold symmetric holomorphic bi-univalent functions
in the open unit disk 4. For functions from the two classes described here, we obtain
estimates on the initial bounds |d,, 41| and |d,p,41]. In addition, we get new special cases
for our results.

1. Introduction

Let A be the unit disk {s:s € Cand |s| < 1}, symbolized by A the class of
functions holomorphic in 4, fulfilling the condition

k(0) =k'(0)—1=0.

Then each function k in A has the Taylor-Maclaurin expansion

k(s) = s + z d,s™. (1.1)
n=2

Further, by § we shall symbolize the class of all functions in <4 which are univalent in 4.

The Koebe one-quarter theorem [4] shows that the image of 4 under every function k

from § contains a disk of radius 1/4. As a result, any univalent function has an inverse
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k=1 which fulfilled
kY(k(s))=s (s€d)

and

1
(k1) =7 (lrl <7 (k); (k) = Z)'
where
k~1(r) = h(r) = r — dyr? 4 (2d2 — d3)r3 — (5d3 — 5d,ds + d)r* + . (1.2)

A function k € A is said to be bi-univalent in 4 if both k(s) and k~1(s) are univalent in
A. We symbolize by X the class of all bi-univalent functions in 4 given by the Taylor-
Maclaurin series expansion (1.1). Lewin [7] discussed the class of bi-univalent functions
2 and gotten a bound |d,| < 1.51. Motivated by the work of Lewin [7], Brannan and
Clunie [3] hypothesised that |d,| < /2. Some examples of bi-univalent functions are
i ,—log(1—s5s) and %log (E) (see also Srivastava et al. [15]). The coefficient

estimate problem involving the bound of |d,,| (n € N\{l,Z}) for each f € X is still an
open problem [15].

For each function f € S, the function

g(s) = Vk(s™) (s EAmE N) (1.3)

is univalent and maps the unit disk 4 into a region with m-fold symmetry. A function is
told to be m-fold symmetric (see [5, 10]) if it has the following normalized form:

k(s) =s+ Z dmns1S™* (s € 4,m e N). (1.4)
n=1

We symbolize by S, the class of m-fold symmetric holomorphic univalent functions in

A, which are normalized by the series expansion (1.4). In fact, the functions in the class §

are one-fold symmetric (that is, m = 1).

In [16] Srivastava et al. defined m-fold symmetric holomorphic bi-univalent function
analogues to the concept of m-fold symmetric holomorphic univalent functions. They
gave some important results, such as each function k € X' generates an m-fold symmetric
holomorphic bi-univalent function for each m € N, in their study. Furthermore, for the

normalized form of k given by (1.4), they obtained the series expansion for k™1 as
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follows:

k71(r) = h(r) = 1 — dippr 7™ + [ + D df 1 — doped [r2™H —
1
[E (m+1DBm+ 2)dy 1 — Bm + 2)dpy1domer + daar |72+, (1.5)

where k™1 = h. We denote by X,, the class of m-fold symmetric holomorphic bi-
univalent functions in 4. For m = 1, formula (1.5) coincides with formula (1.2) of the
class 2.

Recently, many penmen investigated bounds for various subclasses of m-fold
symmetric holomorphic bi-univalent functions (see [1, 2, 6, 11, 12, 13, 14, 17]).

The aim of this paper is to submit two new subclasses of the function class bi-
univalent functions in which both k and k™! are m-fold symmetric holomorphic bi-
univalent functions and derive bounds on initial coefficients |d,,4+1]| and |dym4q| for
functions in each of these new subclasses. Several related classes are also investigated
and connections to earlier known outcomes are made.

We employ the following lemma [4] of Caratheodary class to deduce our main
results.

Lemma 1.1. If p € P, then |c,| < 2 for each n € N, where P is the family of all
functions p, holomorphic in A, for which

R(p(s)) >0 where p(s) =1+c¢s+cys2+- (s€A).

2. Coefficient Bounds for the Function Class ARy (9, 4; a)

Definition 2.1. A function k(s) € X, given by (1.4) is told to be in the class
ARs (6,4; a) if the following conditions are fulfilled:

sk'(s) sk"(s) + k'(s)
“a [(1 0 </15k’(5) +(1- A)k(s)> J </15k”(s) + k'(s))

aTm
< (se4) 1)

and

rh'(r) > s ( rh'(r) + h'(r) >
Arh' () + (1 = Dh@r) Arh' (r) + h'(r)

arg [(1 -9) <

aTn
‘ < (red), (22)

where the function 7 = k™1 is givenby (1.5)and (0 < 6§ <1;,0< 1< 1; 0 < a < 1).
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Theorem 2.1. Let the function k(s), given by (1.4), be in the class ARy, (6,4; a).
Then

2a
2.3)

dmsr] < .
| 1 <mJlZa(l—/1)(1—/1+6m—26/1m—6/1m2)+(1—a)(1—/1)2(1+5m)2| (

and
202(m + 1) a
domirl < Sz 2 T om)? T M@ =D + 26m)° @4
Proof. Let k € ARy (8,2; ). Then

(1-96) (lsk'(s) ik((;)— /’l)k(s)) 9 <%> =G @5

and
=9 (zrh’m :h((lr)— A)h(r)) i <%) - Lol o

where 5= k™ and p(s), q(r) in P and have the forms

p(8) = 1+ pps™ + P S2™ + D3y s™ + o 2.7)

and
q(r) = 1+ @™ + Qo7 ?™ + Qg 3™ + . (2.8)

It follows from (2.5) and (2.6) that
m(1 -+ m)dms1 = apm, (2.9)
2m(1 — D) (1 + 26m)dymer — m(1 — D)1+ Am)(1 + 26m + 6m?)d?,44

1
= apym + Ea(a — 1)p3, (2.10)

—-m(1 -2+ dm)d,1 = aqm, (2.11)
and
m(1 =) (1 +2m — Am + 26m + 36m? — 26Am? — 5§Am3)d?,,,

=2m(1 -1+ 26m)dypman

1
= aqym + za(a - 1)g3. (2.12)
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From (2.9) and (2.11), we get
Pm = —qm (2.13)
and
2m?(1 — 1)?(1 + dm)?d3, ., = a?(p4 + q2). (2.14)
From (2.10), (2.12) and (2.14), we find
2m?(1 —A)(1 — A+ ém — 26Am — 6Am?)d?2,,,

ala—1)
2

ala—1)
= a(Pam + q2m) + T

= a(Pem + 92m) + (przn + QTZn)

(m(1 — )1 + 6m))?d2,,4. (2.15)
Therefore, we have

d2 — az(pZm + qu)
T 2am2(1 — A)(1 — A+ dm — 26Am — 6Am2) + (1 — a)m2(1 — )2(1 + sm)?’

(2.16)

Stratifying Lemma 1.1 for the coefficients p,,, and q,,,, we get

2a
.2
m\/IZa(l - MDA -2A4+m—26Am —86Am?) + (1 — a)(1 — A)?(1 + dm)?| (

|dm+1| <

17)

The last inequality gives the desired estimate on |d,, 1| given in (2.3).
Next, the bound on |d,,;,41| is then found by subtracting (2.12) from (2.10).
4m(1 — (1 + 26m)dymer — (2m(im + 1)(1 — )1 + 26m))d4 44

ala—1)
2
By using (2.13), (2.14) and (2.18), we get

= aPam — Gom) + (P — %) (2.18)

g o @t Dn am) aP2m — d2m)
ML T Am2(1 — D21+ 6m)2  4m(1 — (1 + 26m)’

(2.19)

Stratifying Lemma 1.1 once again for the coefficients p,;,, P2m and q,, , om, We get

¥ < 2a2(m + 1) N a
2 = m2(1 =21+ 6m)2  m(1—A)(1 + 26m)’

This proves Theorem 2.1.
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3. Coefficient Bounds for the Function Class AR; (8, 4; B)

Definition 3.1. A function k(s) € X,,, given by (1.4) is told to be in the class
ARy, (6,4; B) if the following conditions are fulfilled:

sk'(s) sk"(s) + k'(s)

and

rh' (1) > s ( rh'(r) + h'(r)

Re | (=9) <,1rh’(r) = D) Arh () + (@)

> >p (red), (32)

where the function 7 = k™1 is givenby (1.5)and (0 < 6§ < 1;0< 1< 1; 0 < B < 1).

Theorem 3.1. Let the function k(s), given by (1.4), be in the class ARy _(6,4; B).
Then

(ol < — 2P (33)
T m 1= DA = A+ Sm — 284m — 5Am3)| '

and

o] < 2(1-p)’(m+1) 1-p)
ML= 21— )21+ 6m)?2 ' m(1— )1+ 26m)’

(3.4)

Proof. It follows from (3.1) and (3.2) that there exists p, ¢ € P such that

sk'(s) sk'(s) + k()
(1-19) </15k'(s) Ta- A)k(s)) + 5<m> =p+ 1 -Bp(s) (3.5)

and
rh'(r) rh' () +h(@)\
1-9) </1rh/(r) +(1- A)h(r)) o (m”(r) + h’(r)> =f+ A=Pa). G

where p(s) and q(r) have the forms (2.7) and (2.8). It follows from (3.5) and (3.6), we
find

m(1 -1+ ém)dyy = (1 = B)om, (3.7)
2m(1 — D)1 + 26m)dymer — m(1 — DA + Am)(1 + 26m + §m?)d?,,4

= (1= P)pzm (38)
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—-m(1-2D)A+ém)dpme =1 —B)qm, (3.9)
and
m(1 =) (1 +2m— Am + 26m + 36m? — 26Am? — §Am3)d?,,,
—2m(1 -1+ 26m)dymyeq
=1 -Bam- (3.10)
From (3.7) and (3.9), we get
Pm = —m (3.11)
and
2m?(1 - D*(A + 6m)?di s, = (1 = B)* (0 + am). (312)
Adding (3.8) and (3.10), we get
2m2(1 -1 = A+ 6m —26Am — §Am?)d%,.1 = (1 — B)Pam + Gom)-  (3.13)
Therefore, we obtain
1- +
diier = 2m?(1 — /1)((1 —'BA) 39357;1 —q22:5n/1)m — 6Am?)’ (3.14)
Stratifying Lemma 1.1 for coefficients p,,, and q,,,, we readily get
] < 1] ES Il
(1= =21+ 6m —26Am — 5Aam?2)|’
This gives the desired estimate on |d,;, 1| given by (3.3).
Next, the bound on |dy,,41] is then found by subtracting (3.10) from (3.8).
4m(1 — (1 + 26m)dymer — (2m(m + 1)(1 — D)1 + 26m))dZ 14
= (1 = B)P2m — 2m)- (3.15)
Or equivalently
T ey oo (3.16)

By substituting the value of d2,,; from (3.12), we find

Earthline J. Math. Sci. Vol. 10 No. 2 (2022), 227-239
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A=+ Dr+a7) , (1= B)0em — Gam)
dome1 = 4m2(1 — )2(1 + 6m)? + 4m(1 — )1+ 26m)’ (317

By using Lemma 1.1 once again for the coefficients Py, Pm, Qom and q,,, we get

| < 2(1-p)*(m+1) 1-p
A= 21— )21 4 6m)?2 ' m(1— )1 + 26m)’

This proves Theorem 3.1.

4. Corollaries and Consequences

If we set § = 1 in Definition 2.1 and Definition 3.1, then the classes c/wezm 6,4 a)
and ARy (6,4;B) shorten to the classes ARy (4 a) and ARy (4;B) and thus,
Theorem 2.1 and Theorem 3.1 shorten to Corollary 4.1 and Corollary 4.2, respectively.

The classes ARy (4; a) and ARy (4; ) are respectively defined as follows:

Definition 4.1. A function k(s) € X,,, given by (1.4) is told to be in the class
AR5 (4; a) if the following conditions are fulfilled:

- <sk”(s)+k’(s)> ‘<a_n nd ‘ar (rh”(r)+h’(r)> _an
I\ +EG) 2 N +rm) -2

(s,r € 4),

where the function 7 = k™1 is givenby (1.5)and (0 < 1< 1; 0 < a < 1).

Definition 4.2. A function k(s) € X, given by (1.4) is told to be in the class
ARy, (4;B) if the following conditions are fulfilled:

sk’(s) + k'(s) rh'(r) + h'(r)
¢ (Ask”(s) + k’(s)> >F and Re <Arh”(r) +h(r)

where the function 7 = k™1 is given by (1.5)and (0 < 1< 1; 0 < B < 1).

>>[¥ (s,7 €4),

Corollary 4.1. Let k(s) given by (1.4) be in the class ARy, (4; a). Then

2a
my12a(1 — D[(m+1) —A(m + 1)2] + (1 — )(1 — )2(m + 1)?|

|dmsr| <

and

2a? a
d < '
ldym+a| < m2(1—2A)2(m+1) + m(1—-A1)(1+2m)

http:/fwww.earthlinepublishers.com
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Corollary 4.2. Let k(s) given by (1.4) be in the class ARy, (4; B). Then

do .| < 1 21-p)
M m 1A= D[m+ 1) = A(m + 1)?]|

and

2(1 - B)? (1-p)
ldomiil < e 2+ ) T mA = D+ 2m)

For one-fold symmetric holomorphic bi-univalent functions, the classes
ARy (6,4,a) and ARy (6,4;) shorten to the classes ARy(5,4;2) and
AR5 (6,4; ) and thus, Theorem 2.1 and Theorem 3.1 shorten to Corollary 4.2 and
Corollary 4.3, respectively.

The classes AR5 (5, 4; a) and AR5 (6, 4; §) are defined in the following way:

Definition 4.3. A function k(s) € 2 given by (1.1) is told to be in the class
AR5 (8, A; a) if the following conditions are fulfilled:

rk'(s) sk"(s) + k'(s) an
9 [“ 9 (m(s) T A)k(s)) o (m)] ‘ <7 e

and

arg[(1—6)< , rh (1) >+6(rh (r)+h(r)>” e,
Arh (r) + (1 — Dh(r) Arh (r) + h (r)

where the function 2z = k™1 is given by (1.2)and (0 < § < 1;0< 1< 1; 0<a < 1).

Definition 4.4. A function k(s) € 2 given by (1.1) is told to be in the class
AR5 (8, 4; B) if the following conditions are fulfilled:

sk'(s) sk(s) + k'(s)
ke <(1 —9) ()lsk'(s) e /’l)k(s)) 9 ()lsk"(s) n k/@))) >p el

and

Re (1—5)( __Th(n) )+5(M> >B  (red),
Arh (r) + (1 — Dh(r) Arh (r) + h (r)

where the function # = k™1 is givenby (1.2)and (0 <6 <1;0< 1< 1; 0 < < 1).

Earthline J. Math. Sci. Vol. 10 No. 2 (2022), 227-239
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Corollary 4.3. Let k(s) given by (1.1) be in the class AR5 (5, A; @). Then

2a
d,| <
| <\/|20c(1—/1)((1—/1)(1+6)—25&)+(1—a)(1—/1)2(1+6)2|

and

- 4q? a
< oo Ta=na+20)

Corollary 4.4. Let k(s) given by (1.1) be in the class AR5 (5, A; B). Then

|ds

] < 2(1-p)
2= @A -D[A =D +6) —261]]

and

4(1-pB)? (1-5)
‘Gl ara e ta-narae)

If we set 6§ =1 andm = 1 in Definition 2.1 and Definition 3.1, then the classes
ARy (6,4 a) and ARy (6,4;B) shorten to the classes ARy (4; @) and ARz (4;B)
and thus, Theorem 2.1 and Theorem 3.1 shorten to Corollary 4.5 and Corollary 4.6,
respectively.

The classes ARy (4; @) and AR5 (4; ), are respectively defined as follows:

Definition 4.5. A function k(s) € X given by (1.1) is told to be in the class
ARy (4; ) if the following conditions are fulfilled:

( sk'(s) + k'(s) > ‘ _ar < rh'(r) + h'(r) >
TIN5k () ¥ K (s) 2 o Ark (r) + h'(r)

am
<— (s,red),

d
an >

where the function 7 = k™1 is givenby (1.2)and (0 < 1< 1; 0 < a < 1).

Definition 4.6. A function k(s) € X given by (1.1) is told to be in the class
AR5 (A; B) if the following conditions are fulfilled:

Re ( sk'(s) + k'(s) ) > 8 and Re ( rh (r) +h(r)

B TEG) o) E e

where the function 7 = k™1 is givenby (1.2)and (0 < 1< 1; 0 < B < 1).
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Corollary 4.5. Let k(s) given by (1.1) be in the class AR5 (A; a). Then

2

a a

d,| < d |d;| < .
s e a A —wa—ny T Ta— tsa-n

Corollary 4.6. Let k(s) given by (1.1) be in the class AR5 (A; B). Then

1-— 1—p)? 1-—
@) < =B g gy <P =)
(1 =21 -22)] 1-22 3(1-21)
Remark 4.1. For m-fold symmetric holomorphic bi-univalent functions:

1. Putting § = 0, in Theorems 2.1 and 3.1, we get the corresponding outcomes given
by Altinkaya and Yalgin [1].

2. Putting § =0 and 4 =0, in Theorems 2.1 and 3.1, we get the corresponding
outcomes given by Altinkaya and Yalcin [1].

3. Putting § =1 and 1 =0, in Theorems 2.1 and 3.1, we get the corresponding
outcomes given by Kumar et al. [6].

4. Putting A = 0, in Theorems 2.1 and 3.1, we get the corresponding outcomes given
by Sivasubramanlan and Sivakumar [12].

Remark 4.2. For 1-fold symmetric holomorphic bi-univalent functions:

1. Putting 6§ =1 and A =0, in Theorems 2.1 and 3.1, we get the corresponding
outcomes given by Kumar et al. [6].

2. Putting § =0 and A =0, in Theorems 2.1 and 3.1, we get the corresponding
outcomes given by Murugusundaramoorthy et al. [9].

3. Putting § = 0, in Theorems 2.1 and 3.1, we get the corresponding outcomes given
by Murugusundaramoorthy et al. [9].

4. Putting A = 0, in Theorems 2.1 and 3.1, we get the corresponding outcomes given
by Li and Wang [8].
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