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Abstract 

When we talk of optimization in industry we need to pay attention in searching for very 

powerful and flexible optimization techniques. One of such techniques which has 

attracted the interest of many researchers in the last few decades is called geometric 

programming that provides a powerful tool for solving nonlinear problems. As we know 

in the real world, many applications of geometric programming are engineering design 

problems. Generally, engineering design problems deal with multi-objective functions, in 

which their objectives are often in conflicts with each other. This paper considers a 

solution method when the cost, the constraint coefficients, and the right-hand sides in the 

multi-objective geometric programming problems are imprecise and represented as 

interval values. This problem is reduced with the method of weighted sum to a single 

objective function and further by applying interval-valued function, we solve the problem 

by geometric programming technique. The ability of calculating the bounds of the 

objective value developed in this paper might help lead to more realistic modeling efforts 

in engineering optimization areas. Finally a numerical example is given to illustrate the 

methodology of solution and efficiency of the present approach. 
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1. Introduction  

Geometric Programming (GP) is a methodology for solving algebraic nonlinear 

optimization problems especially found in engineering design and manufacturing. The 

theory of GP was introduced by Duffin et al. [2] to put a foundation stone to solve a wide 

range of engineering design problems. The most important property of GP is that a 

problem with highly nonlinear constraints can be stated easily and reduced to a problem 

with only linear constraints, with the help of its deal, since linear constraints are 

obviously effective in making a problem easier to some extent. For more detail on 

discussions of various algorithms and computational aspects for GP, refers to Beightler 

and Phillips [1].  

The problem parameters of many applications of geometric programming problems 

are estimates of actual values (Beightler and Philips [1]). In real World, to get the exact 

information regarding parameters data collection cannot be possible due to human errors 

or some unexpected situations. Therefore, there are many cases in which these 

parameters may not be presented in their exact sense. The main approach is to apply 

interval estimates instead of single values to represent the uncertain parameter. Liu [3] 

developed a solution method of posynomial geometric programming with interval 

exponents and coefficients. A pair of two-level mathematical programs is formulated, 

and hence it solves the pair of problems using the geometric programming technique to 

obtain the objective value as an interval number. Mahapatra and Mandal [4] developed a 

solution procedure using GP technique by applying the interval-valued function as 

coefficients. Generally, an engineering design problem has multiple objective functions. 

In this case, it is not suitable to use any single objective programming to find an optimal 

compromise solution. Ojha and Ota [5] developed a method to solve multi-objective 

Geometric programming problem where cost coefficients of objective function as well as 

coefficients of constraints are multiple parameters. Saraj and Bazikar [6] solved the 

problem of multi-objective geometric programming problem via reference point 

approach. Mahapatra and Mandal [7] introduced parametric functional form and then 

solved the problem by geometric programming technique. Ojha and Das [8] considered a 

solution procedure to solve nonlinear programming problems using GP technique by 

splitting the cost coefficients and exponents with the help of binary numbers. Ojha and 

Biswal [9] developed a new method to solve geometric programming problems with 

multiple parameters exponents and coefficients, in which the equivalent mathematical 
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programming on using a variable separable technique based on the duality theorem 

yields to multiple objective values. Ojha and Das [10] investigated an optimization 

problem where the cost coefficients are continuous functions and applied weighted 

method to obtain the non-inferior solutions. Das and Roy [11] developed a methodology 

to solve a multi-objective geometric programming by applying MOGP technique based 

on weighted-sum method, weighted-product and min-max method. Ojha and Biswal [12] 

worked out on basic concepts and principal of multiple objective optimization problems 

and they developed a new technique to solve geometric programming by using weighted 

mean to get the non-inferior solution to the problem.   

In this paper, we have emphasized on multi-objective posynomial geometric 

programming problems and developed a solution method which will be able to calculate 

the bounds of objective value for the problems where the cost, the constraint coefficients 

and right-hand sides are interval parameters. The ability of calculating the bounds of 

objective value is basically developed in this paper which is the extension of [5] that may 

help researchers in constructing more realistic model in optimization field. Weighting 

method has been applied to the problems and by use of interval-valued function, we have 

been able to solve the problem by geometric programming technique. Very pioneer 

concept on interval Analysis is due to Moore et al. [13]. Wu [14] in which they proposed 

Psareto optimal solutions for the multi-objective problems with interval-valued 

functions, by considering the continuity and differentiability of an interval-valued 

function and the KKT optimality conditions. Mandal and Islam [15] by applying a 

parametric interval-valued functional form, solved the parametric geometric 

programming problem. Marler and Arora [16] verified the fundamental significance of 

the weights in terms of preferences, the Pareto optimal set and objective-function values. 

Liu [17] proposed the profit-maximization problem with interval coefficients and input 

quantity discount then by using the two-level mathematical programming achieve the 

upper and lower bound of the profit value. Bhurjee and Panda [18] considered a 

nonlinear multi-objective problem whose parameter in the objective function and 

constraints between lower and upper bounds. Liu [19] developed a strong tool for 

solving nonlinear problems where nonlinear relations stated by exponential function. Xu 

[20] provided a global optimization approach for solving signomial geometric 

programming problems. 
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2. Formulation of Multi-objective Geometric Programming Problem (MOGPP) 

A multi-objective geometric programming problem can be defined as:   

Find ( )Tnxxxx ...,,, 21=  so as to  
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,0>kotc 0>itc  for all tk,  and i.  

kotja  and itjγ  are real numbers for all .,,, tkji   

=kos Number of terms present in the k-th objective function.  

=is Number of terms present in the k-th constraints.  

All the coefficients in Model (2.1) must be precise. If any of the coefficients be 

represented as an interval value, therefore we expect that the objective value to be 

imprecise as well. Suppose iitkot bcc ˆ,ˆ,ˆ  denote the interval counterparts of itkot cc ,  and 

,ib  respectively. The MOGPP with interval coefficients is of the following form:  
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,...,,2,1,0 njx j =>  (2.2)  

where  
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3. Weighting Method Solution of MOGPP  

As we know the weighting method is one of the most popular techniques for solving 

MOGPPS, which can be applied to obtain the non inferior optimal solution of multi-

objective functions with the convex objective space. A weighting method for MOGPP 

with interval coefficients can be defined as follows:  
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4. Mathematical Formulation  

Definition 4.1. Let 0,0 >> ba  and consider the interval [ ]., ba  As we know 

mathematically any real number can be considered as a line, therefore in a similar 

fashion, we can represent an interval by a function. If we represent an interval in the 

form of [ ],, ba  then corresponding interval-valued function can be assumed as:  

( ) qq
baqH

−= 1  for [ ].1,0∈q  
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The model (P) can be written in the form of:  
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The following theorem gives the idea that in fact both the solution of the model (P) 

and the model (Pq) are same when the coefficients are the interval values of the MOGPP.   

Theorem 4.2. The problem (Pq) provides the solution of the problem (P).   

Proof. The given model (P) can be written as follows:  
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For any fixed i, let us consider the interval-valued function ( ) q
i

q
ii baqh
−= 1

 for 

[ ]1,0∈q  for an interval [ ]iiii ba ,, ∈ξβ  similarly. For any fixed k, we consider 

( ) q
k

q
kk baqh
−= 1

 for [ ]1,0∈q  for an interval [ ]., kkk ba∈α  Since ( ) q
i

q
ii baqh
−= 1

 for 

[ ]1,0∈q  and ( ) q
k

q
kk baqh
−= 1

 for [ ]1,0∈q  are strictly monotone and continuous 

functions, its inverse exists. Let δ be the inverse of ( ),qhi  the ;
loglog

loglog

ii

i

ab

a
q

−
+δ=  

therefore, similarly suppose ν be the inverse of ( ),qhk  then .
loglog

loglog

kk

k

ab

av
q

−
+=  Thus, 

we can calculate any particular iik ξβα ,,  values of [ ].1,0∈q   

The optimal solution of the problem (P) can be obtained by solving the model (Pq), 

which can be written as follows:  
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5. Numerical Example  

The given example represents the ability of the proposed approach in this paper for 

solving a MOGPP with interval value of cost, constraint coefficients and right-hand 

sides.  

Example.  

Find 321 ,, xxx  so as to  
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subject to 

qqqq
xxxxx
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Here .0,,1 2121 >=+ wwww   

In this problem the degree of difficulty is 2 and it can be solved by the corresponding 

dual problem:  
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For different values of parameter q and the different weights 21, ww  the dual 

variables and the maximum value of dual objective function, for example, for  

5.021 == ww  is given in the following table.  
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Table 1. 5.021 == ww  and 10 ≤≤ q  for dual solution. 

q 01w  02w  03w  11w  12w  21w  Dz  

0.0 0.3278501 0.5573833 0.1147666 0.3524610 1.762306 0.6475390 0.00720723 

0.1 0.3333503 0.5555499 0.1110998 0.4075645 1.703535 0.5294355 0.106287 

0.2 0.3383289 0.5538904 0.1077808 0.4690070 1.638774 0.5309930 0.015844 

0.3 0.3427482 0.5524173 0.1048345 0.5368170 1.568018 0.4631830 0.0239003 

0.4 0.3465724 0.5511425 0.1022850 0.6108104 1.491475 0.3891896 0.0365232 

0.5 0.3497698 0.5500767 0.1001535 0.6905580 1.409595 0.3094420 0.0565995 

0.6 0.3541842 0.5492287 0.09845733 0.7753703 1.323087 0.2246297 0.0890309 

0.7 0.3541842 0.5486053 0.09721052 0.8643032 1.232907 0.1356968 0.142264 

0.8 0.3553652 0.5482116 0.09642317 0.951906 1.140233 0.0438094 0.231063 

0.9 0.3597738 0.5467421 0.09348416 1.0 1.093484 0.0 0.380728 

1.0 0.3573434 0.5442189 0.08843771 1.0 1.088438 0.0 0.628756 

Table 2. 5.021 == ww  and 10 ≤≤ q  for primal solution. 

q 1x  2x  3x  z 

0.0 9.515512 63.43647 0.1050915 0.00720724 

0.1 8.384132 50.49955 0.1192729 0.106287 

0.2 7.352717 39.81305 0.1360042 0.015844 

0.3 6.420475 31.08001 0.1557517 0.0239003 

0.4 5.578173 23.99354 0.1792702 0.0365232 

0.5 4.819880 18.30015 0.2074740 0.0565995 

0.6 4.140047 13.77734 0.2415432 0.0890309 

0.7 3.533888 10.23081 0.2829744 0.142264 

0.8 2.996667 7.488917 0.3337040 0.231063 

0.9 2.391478 5.874228 0.3812018 0.380728 

1.0 1.817239 4.948107 0.4213112 0.628756 

Consequently, in Table 2 by considering the primal-dual relationship, the 

corresponding primal solution for different values of parameter q and the weights   

5.021 == ww  is obtained.  

While solving for different weights and different values of parameter q we find out 

the upper bound of Dz  for dual solution which is obtained for 5.021 == ww  and 1=q  

as 628756.0=u
Dz  and the lower bound of Dz  is obtained for 5.021 == ww  and 
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0=q  as ,00720723.0
1 =Dz  similarly for primal solution the upper and the lower 

bounds are obtained for the same values of weights 5.021 == ww  and parameter 

( )1,0 == qq  as ,00720724.01 =z  .628756.0=u
z  It is to be noted that all the 

calculations for different values of q and w is done by using Lingo software.  

6. Conclusion  

The parameters of mathematical models for many real world problems are usually 

stated imprecisely and this leads to the formulation of mathematical programming 

models with interval values. In this paper, by applying weighted method, a multi-

objective geometric programming is converted to a single objective geometric 

programming problem in which parameters are interval valued numbers. The idea in the 

present article is to find the upper and the lower bounds of the objective value. The 

solution procedure is of GP technique by using interval-valued function. This technique 

will take minimal time and the problems with this procedure may help researchers for 

wider application in the field of engineering problems. 
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