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Abstract

Modern applied statistics naturally give rise to the continuous Bernoulli

distribution (data fitting, deep learning, computer vision, etc). On the

mathematical side, it can be viewed as a one-parameter distribution

corresponding to a special exponential distribution restricted to the unit

interval. As a matter of fact, manageable extensions of this distribution

have great potential in the same fields. In this study, we motivate a

transmuted version of the continuous Bernoulli distribution with the goal

of analyzing proportional data sets. The feature of the created transmuted

continuous Bernoulli distribution is an additional parameter that realizes

a linear tradeoff between the min and max of two continuous random

variables with the continuous Bernoulli distribution. The standard study

process is respected: we derive some mathematical properties of the proposed

distribution and adopt the maximum likelihood estimation technique in

estimating the unknown parameters involved. A Monte Carlo simulation

exercise was conducted to examine and confirm the asymptotic behavior of

the obtained estimates. In order to show the applicability of the proposed
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distribution, three proportional data sets are analyzed and the results

obtained are compared with competitive distributions. Empirical findings

reveal that the transmuted continuous Bernoulli distribution promises more

flexibility in fitting proportional data sets than its competitors.

1 Introduction

In order to motivate the findings of this study, we need a retrospective on the

continuous Bernoulli distribution and the transmuted scheme, which are the

subjects of the two coming subsections.

1.1 The continuous Bernoulli distribution

The basic definition of the continuous Bernoulli distribution is recalled below.

Definition 1. The continuous Bernoulli distribution with parameter θ ∈ (0, 1),

also denoted as CB(θ), is defined with the pdf given by

f(x) =

C(θ)θx(1− θ)1−x, x ∈ (0, 1),

0, x 6∈ (0, 1),
(1.1)

where C(θ) is the following constant:

C(θ) =


2, θ =

1

2
,

2 tanh−1(1− 2θ)

1− 2θ
, θ ∈ (0, 1)/

{
1

2

}
,

(1.2)

where tanh−1(x) denotes the inverse hyperbolic tangent defined by tanh−1(x) =

(1/2) ln[(1 + x)/(1− x)].

Therefore, the CB(θ) distribution can be presented as a one-parameter

continuous distribution with support of (0, 1); it thus belongs to the family of

unit distributions. It is found useful in several branches of probability theory,
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statistics, and machine learning. In particular, it is used quite efficiently to

simulate the pixel intensities of natural images in deep learning and computer

vision, notably in the setting of variational autoencoders. As a result, it establishes

a precise probabilistic equivalent for the widely used binary cross entropy loss,

which is frequently utilized in nonlinear systems with values in [0, 1]. We refer the

reader to [13] and [9] for more information on this topic. Furthermore, the CB(θ)

distribution belongs to the family of truncated exponential distributions.

There are several mathematical results concerning the CB(θ) distribution. The

most manageable of them are recalled below.

First, the cdf of the CB(θ) distribution is expressed as

F (x) =



0, x ≤ 0

x, θ =
1

2
and x ∈ (0, 1),

θx(1− θ)1−x + θ − 1

2θ − 1
, θ ∈ (0, 1)/

{
1

2

}
and x ∈ (0, 1),

1, x ≥ 1.

The hazard rate function (hrf) is obtained as h(x) = f(x)/[1− F (x)], x ∈ R,

(the expression is omitted for the sake of place).

By inverting F (x), the quantile function (qf) of the CB(θ) distribution is

indicated as

Q(u) =


u, θ =

1

2
and u ∈ (0, 1),

ln[(2θ − 1)u+ 1− θ]− ln(1− θ)
ln(θ)− ln(1− θ)

, θ ∈ (0, 1)/

{
1

2

}
and u ∈ (0, 1).

As the main central parameter, the mean of a random variable X following the

CB(θ) distribution is given by

E(X) =


1

2
, θ =

1

2
,

θ

2θ − 1
+

1

2 tanh−1(1− 2θ)
, θ ∈ (0, 1)/

{
1

2

}
.
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As the main dispersion parameter, the variance of a random variable X

following the CB(θ) distribution is expressed as

V (X) =


1

12
, θ =

1

2
,

(1− θ)θ
(1− 2θ)2

+
1

[2 tanh−1(1− 2θ)]2
, θ ∈ (0, 1)/

{
1

2

}
.

More theory is given in [13], but emphasis will be put on the moment measures

above in this study.

1.2 Transmuted scheme

The transmuted generated family of distributions finds its origin in the article

of [3]. It is defined below.

Definition 2. The transmuted generated family of distributions, with parameter

λ ∈ [−1, 1], also denoted as T G(λ), is defined with the cdf given by

FG(x) = 1− [1− λG(x)][1−G(x)], x ∈ R,

where G(x) denotes any cdf of a chosen (absolutely) continuous distribution that

may depend on several parameters (in other words, G(x) is the cdf of a baseline

continuous distribution).

The transmuted scheme was introduced by [18]. The aim of the T G(λ) family

of distributions is to add more functionalities to a baseline distribution by using

the parameter λ. The transmuted scheme is elaborated to realize a linear tradeoff

between the baseline distribution, and the distributions of the min and max of

two independent random variables also having this baseline distribution.

The pdf of the T G(λ) family of distributions is given as

fG(x) = g(x)[1 + λ− 2λG(x)], x ∈ R,

where g(x) refers to the pdf related to G(x).
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The qf of the T G(λ) family of distributions is given as

QG(u) =


G−1(u), λ = 0 and u ∈ (0, 1),

G−1

{
1 + λ−

√
(1 + λ)2 − 4λu

2λ

}
, λ 6= 0 and u ∈ (0, 1).

Clearly, both fG(x) and QG(x) are possibly manageable, depending on the degree

of complexity of the baseline distribution.

Many authors have introduced different generalizations of classical

distributions based on the transmuted scheme. These generalizations include the

transmuted Lindley distribution by [14], transmuted Weibull distribution by [1],

transmuted modified inverse Weibull distribution by [6], transmuted generalized

Lindley distribution by [7], transmuted two-parameter Lindley distribution by

[10], etc. Recently, [17] considered the transmuted version of the Marshall-Olkin

extended Topp-Leone distribution proposed by [16].

1.3 Motivation and organization

The goal of this study is to broaden the scope of the CB(θ) distribution using a

transmuted scheme; we consider the CB(θ) distribution as a baseline distribution

of the T G(λ) family. Thus, we intend to add some new functional perspectives

of the CB(θ) distribution without adding too much complexity. The benefits and

details are described in detail in this study from both the theoretical and practical

viewpoints, with the use of real-life data.

The remaining sections of the paper are organized as follows: Section 2

introduces the formulation of the transmuted continuous Bernoulli distribution

and the derivation of its mathematical properties. The parameter estimation and

a Monte Carlo simulation study are conducted in Section 3. Section 4 presents the

real-life data fitting of the proposed distribution together with some competitive

distributions. The concluding remark is presented in Section 5.
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2 The Transmuted Continuous Bernoulli Distribution

As previously stated, we introduce the transmuted continuous Bernoulli

distribution by considering the CB(θ) distribution as a baseline of the T G(λ)

family. The precise definition is as follows.

Definition 3. The transmuted continuous Bernoulli distribution, with parameters
λ ∈ [−1, 1] and θ ∈ (0, 1), also denoted as T CB(λ, θ), is defined with the cdf given
by

F (x) =



0, x ≤ 0

1− (1− λx)(1− x), θ =
1

2
and x ∈ (0, 1),

1−
[
1− λ

θx(1− θ)1−x + θ − 1

2θ − 1

] [
1−

θx(1− θ)1−x + θ − 1

2θ − 1

]
, θ ∈ (0, 1)/

{
1

2

}
and x ∈ (0, 1),

1, x ≥ 1.

The pdf of the T CB(λ, θ) distribution is given by

f(x) =


1 + λ− 2λx, θ =

1

2
and x ∈ (0, 1),

C(θ)θx(1− θ)1−x
[
1 + λ− 2λ

θx(1− θ)1−x + θ − 1

2θ − 1

]
, θ ∈ (0, 1)/

{
1

2

}
and x ∈ (0, 1),

(2.1)

where C(θ) refers to (1.2).

The hrf is obtained as

h(x) =



1 + λ− 2λx

(1− λx)(1− x)
, θ =

1

2
and x ∈ (0, 1),

C(θ)θx(1− θ)1−x
[
1 + λ− 2λ θ

x(1−θ)1−x+θ−1
2θ−1

]
[
1− λ θ

x(1−θ)1−x+θ−1
2θ−1

] [
1− θx(1−θ)1−x+θ−1

2θ−1

] , θ ∈ (0, 1)/

{
1

2

}
and x ∈ (0, 1).

Figure 1 presents the pdf and hrf plots of the T CB(λ, θ) distribution at different

values of the parameters.
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Figure 1: The pdf(left) and hrf(right) plots of the T CB(λ, θ) distribution.

According to Figure 1, the T CB(λ, θ) distribution can accommodate

exponentially decreasing (reversed-J), left-skewed, and right-skewed unimodal

shapes, whereas the hrf can exhibit a bathtub-shape or increase hazard property.

These hazard properties show that the T CB(λ, θ) distribution can feature in the

analysis of increasing failure rate data sets.

The qf of the T CB(λ, θ) distribution is expressed as

Q(u) =



u, λ = 0, θ =
1

2
and u ∈ (0, 1),

ln[(2θ − 1)u + 1− θ]− ln(1− θ)
ln(θ)− ln(1− θ)

, λ = 0, θ ∈ (0, 1)/

{
1

2

}
and u ∈ (0, 1),

1 + λ−
√

(1 + λ)2 − 4λu

2λ
, λ 6= 0, θ =

1

2
and u ∈ (0, 1),

ln

[
(2θ − 1)

1+λ−
√

(1+λ)2−4λu

2λ
+ 1− θ

]
− ln(1− θ)

ln(θ)− ln(1− θ)
, λ 6= 0, θ ∈ (0, 1)/

{
1

2

}
and u ∈ (0, 1),

(2.2)

where C(θ) is given as (1.2).

In order to provide a moment study, let us consider the following lemma, which

can be of independent interest.
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Lemma 1. Let a ∈ (0, 1), b > 0 and c be a positive integer. Then we have∫ 1

0
xcabx(1− a)b(1−x)dx =

(1− a)b

[2b tanh−1(1− 2a)]c+1
γ(c+ 1, 2b tanh−1(1− 2a)),

where γ(x, u) =
∫ u
0 t

x−1e−tdt is the lower incomplete gamma function. If we

restrict the result to a ∈ (0, 1/2), we can assume that c is a positive real number,

instead of a positive integer.

Proof. After a rewriting of the main term, and the change of variable y =

2b tanh−1(1− 2a)x, we obtain∫ 1

0
xcabx(1− a)b(1−x)dx =

∫ 1

0
xcebx ln(a)+b(1−x) ln(1−a)dx

= (1− a)b
∫ 1

0
xce−x[2b tanh

−1(1−2a)]dx

=
(1− a)b

[2b tanh−1(1− 2a)]c+1

∫ 2b tanh−1(1−2a)

0
yce−ydy

=
(1− a)b

[2b tanh−1(1− 2a)]c+1
γ(c+ 1, 2b tanh−1(1− 2a)).

This ends the proof. �

The next proposition gives the exact expression of the moments related to the

T CB(λ, θ) distribution.

Proposition 1. Let X be a random variable with the T CB(λ, θ) distribution and
m be an integer. Then the m-th moment of X is given by

E(X
m

) =



m(1− λ) + 2

(m + 1)(m + 2)
, θ =

1

2
,

2λ

(1− 2θ)2

(1− θ)2

[2 tanh−1(1− 2θ)]m

{[
(1 + λ)(1− 2θ)

2λ(1− θ)
− 1

]
γ(m + 1, 2 tanh

−1
(1− 2θ))

+
1

2m+1
γ(m + 1, 4 tanh

−1
(1− 2θ))

}
, θ ∈ (0, 1)/

{
1

2

}
.

Proof. For the case θ = 1/2, we have

E(Xm) =

∫ +∞

−∞
xmf(x)dx =

∫ 1

0
xm(1 + λ− 2λx)dx =

1 + λ

m+ 1
− 2λ

1

m+ 2

=
m(1− λ) + 2

(m+ 1)(m+ 2)
.
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For the case θ ∈ (0, 1)/{1/2}, we have

E(Xm) =

∫ +∞

−∞
xmf(x)dx

= C(θ)

∫ 1

0
xmθx(1− θ)1−x

[
1 + λ− 2λ

θx(1− θ)1−x + θ − 1

2θ − 1

]
dx

= C(θ)

[
1 + λ− 2λ

θ − 1

2θ − 1

] ∫ 1

0
xmθx(1− θ)1−xdx

− C(θ)
2λ

2θ − 1

∫ 1

0
xmθ2x(1− θ)2(1−x)dx.

By applying Lemma 1 with adequate configurations, we obtain

E(Xm) = C(θ)

[
1 + λ− 2λ

θ − 1

2θ − 1

]
1− θ

[2 tanh−1(1− 2θ)]m+1
γ(m+ 1, 2 tanh−1(1− 2θ))

− C(θ)
2λ

2θ − 1

(1− θ)2

[4 tanh−1(1− 2θ)]m+1
γ(m+ 1, 4 tanh−1(1− 2θ))

=
2λ

(1− 2θ)2
(1− θ)2

[2 tanh−1(1− 2θ)]m

{[
(1 + λ)(1− 2θ)

2λ(1− θ) − 1

]
γ(m+ 1, 2 tanh−1(1− 2θ))

+
1

2m+1
γ(m+ 1, 4 tanh−1(1− 2θ))

}
.

This ends the proof. �

Based on the moments established in Proposition 1, we can easily derive the
mean of a random variable X following the T CB(λ, θ) distribution; it is given as

µ = E(X) =



3− λ
6

, θ =
1

2
,

2λ

(1− 2θ)2
(1− θ)2

2 tanh−1(1− 2θ)

{[
(1 + λ)(1− 2θ)

2λ(1− θ)
− 1

]
γ(2, 2 tanh−1(1− 2θ))

+
1

4
γ(2, 4 tanh−1(1− 2θ))

}
, θ ∈ (0, 1)/

{
1

2

}
.

It is worth mentioning that γ(2, u) = 1 − (1 + u)e−u, which can be used in the

expression above. The variance can be expressed in a similar way through the

standard formula V (X) = E(X2) − µ2. The m-th central moment of X is given

by

E[(X − µ)m] =

m∑
k=0

(
m

k

)
E(Xk)(−1)m−kµm−k.
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We can express it by using Proposition 1. Hence, the moment skewness coefficient

is given by S = E[(X−µ)3]/V (X)3/2 and the moment kurtosis coefficient is given

by K = E[(X − µ)4]/V (X)2. Similarly, we can express them via Proposition 1.

3 Parameter Estimation and Simulation Study

We now investigate the statistical configuration of the T CB(λ, θ) distribution,

assuming that the parameters λ and θ are unknown. We thus planned to estimate

them, for data fitting purposes mainly.

3.1 Estimation

In this study, the maximum likelihood method is considered. The interest of

this method is to provide very efficient estimates, called the maximum likelihood

estimates (MLEs), that are able to approach the true values of the parameters

under some concrete circumstances (see [4]). Let x1, x2, . . . , xn be n independent

observations from a random variable X with the T CB(θ, λ) distribution. The

values of this sample represent possible data on the unit intervals (proportion,

percentage, etc.). The standard likelihood function associated with the pdf in

(2.1) at x = (x1, . . . , xn) is defined as

L(x) =

n∏
i=1

f(xi),

=


n∏
i=1

(1 + λ− 2xi) , θ =
1

2
,

Cn(θ)θ
∑n
i=1 xi (1− θ)n−

∑n
i=1 xi

n∏
i=1

[
1 + λ− 2λθxi(1− θ)1−xi + θ − 1

2θ − 1

]
, θ ∈ (0, 1)/

{
1

2

}
.

(3.1)
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Taking the logarithm of (3.1), we obtain the log-likelihood function as

`(x) =



n∑
i=1

ln (1 + λ− 2xi) , θ =
1

2
,

n lnC(θ) + ln(θ)

n∑
i=1

xi + ln (1− θ)

(
n−

n∑
i=1

xi

)
+

n∑
i=1

ln

[
1 + λ− 2λθxi(1− θ)1−xi + θ − 1

2θ − 1

]
, θ ∈ (0, 1)/

{
1

2

}
.

(3.2)

The MLEs of θ and λ, say θ̂ and λ̂, are obtained by maximizing (3.2) with respect

to θ and λ. They can be obtained through the first partial derivatives of `(x)

according to the parameters, derived as

∂`(x)

∂θ
=

n (1− 2θ)

[
2 tanh−1(1−2θ)

(1−2θ)2
− 2

(1−2θ)
[
1−(1−2θ)2

]
]

tanh−1 (1− 2θ)
+
n−

∑n
i=1 xi

1− θ
+

∑n
i=1 xi

θ

+
n∑
i=1

2
(
2λθxi (1− θ)1−xi + θ − 1

)
− (2θ − 1)

[
1 + 2λxiθ

xi−1(1− θ)1−xi + 2λθxi
(
(1− θ)−xi (xi − 1)

)]
(2θ − 1)

[
(1 + λ) (2θ − 1)− 2λθxi (1− θ)1−xi + θ − 1

] ,

and

∂`(x)

∂λ
=

n∑
i=1

(2θ − 1)− 2 (1− θ)1−xi θxi

(2θ − 1) (1 + λ)− 2λ (1− θ)1−xi θxi + θ − 1
.

As a result, the MLEs are obtained by solving the following system of non-linear

equations: ∂`(x)
∂θ = 0 and ∂`(x)

∂λ = 0. The solutions to these non-linear equations can

be obtained using the “bbmle” package in the R statistical software program. It is

well-known that the random versions of these MLEs are asymptotically unbiased

and normal. In practice, this implies that, for n large enough, the true values

of the parameters are well approached by the MLEs, in both the punctual and

(normal) confidence interval senses. For more information on these properties, we

refer to [4].

In addition, for data fitting purposes, it is important to present the parametric

plug-in method. Based on the MLEs, we can estimate all the underlying functions

of the T CB(θ, λ) distribution. As the main examples, F̂ (x) = F (x; θ̂, λ̂) gives an

estimate of the cdf F (x) = F (x; θ, λ), and f̂(x) = f(x; θ̂, λ̂) gives an estimate of

the pdf f(x) = f(x; θ, λ).
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3.2 Monte Carlo simulation study

In this subsection, we investigate the performance and asymptotic behavior of

the MLEs through a Monte Carlo simulation study. To accomplish this, we use

(2.2) to generate random samples of observations from a random variable with

the T CB(θ, λ) distribution. At the following fixed parameter values: (θ = 0.6, λ =

0.2), (θ = 0.8, λ = 0.1) and (θ = 0.9, λ = 0.5), the simulation is repeated 1000

times for different sample sizes n = (50, 100, 150, 200, 500). For φ ∈ {θ, λ}, the

asymptotic behavior of the MLEs is investigated using the following quantities:

1. Average bias (AB) defined as AB =
1

N

N∑
i=1

(φ̂i − φ),

2. Mean square error (MSE) specified by MSE =
1

N

N∑
i=1

(φ̂i − φ)2,

3. Coverage probability (CP) of the 95% confidence interval (CI) for φ defined

by

CP =
1

N

N∑
i=1

I

(
φ̂i − u∗

√
var(φ̂i) < φ < φ̂i + u∗

√
var(φ̂i)

)
,

4. Average width (AW) of the 95% CI for φ given by

AW =
2u∗
N

N∑
i=1

√
var(φ̂i),

where I(.) is the indicator function, var(φ̂i) is the empirical variance of φ̂i and

z∗ = 1.959964.

Table 1 presents the simulation results for the AB, MSE, CP and AW for the

MLEs of θ and λ.
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Table 1: Simulation results for the MLEs in the context of the T CB(θ, λ)

distribution.

AB MSE CP AW

Parameters n θ λ θ λ θ λ θ λ

50 0.0449 0.1576 0.0290 0.1706 0.808 0.844 1.0536 2.3168

θ = 0.6 100 0.0211 0.0839 0.0189 0.1005 0.868 0.862 0.9359 1.9821

λ = 0.2 150 0.0196 0.0645 0.0159 0.0806 0.852 0.886 0.8415 1.7705

200 0.0054 0.0318 0.0128 0.0573 0.902 0.916 0.8409 1.7576

500 0.0027 0.0164 0.0095 0.0430 0.868 0.896 0.6682 1.3839

50 0.0103 0.1498 0.0131 0.1773 0.790 0.850 0.07801 2.2742

θ = 0.8 100 0.0028 0.0737 0.0096 0.1033 0.820 0.900 0.6303 1.8034

λ = 0.1 150 -0.0045 0.0356 0.0079 0.0765 0.864 0.896 0.5995 1.6852

200 -0.0082 0.0166 0.0071 0.0686 0.874 0.916 0.5852 1.6176

500 -0.0100 0.0002 0.0051 0.0438 0.886 0.916 0.4792 1.2943

50 -0.0329 -0.0154 0.0109 0.1755 0.828 0.862 0.5252 1.8157

θ = 0.9 100 -0.0209 -0.0224 0.0070 0.1010 0.858 0.908 0.3676 1.3452

λ = 0.5 150 -0.0201 -0.0316 0.0053 0.0744 0.912 0.920 0.2949 1.0974

200 -0.0179 -0.0444 0.0039 0.0581 0.912 0.932 0.2510 0.9676

500 -0.0057 -0.0092 0.0011 0.0185 0.938 0.958 0.1169 0.5284

From Table 1, we note the following observations:

• The ABs decrease as n increases,

• both MLEs can be positively as well as negatively biased,

• the MSEs of both MLEs decrease as n increases,

• the CPs of both parameter estimates approach 0.95 as n increases,

• the AWs of both MLEs decrease as n increases.

These results reveal the consistency property of the MLEs.
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4 Data Fitting

4.1 Framework

To illustrate the potentiality of the T CB(θ, λ) distribution in real-life data

analysis, we fitted the T CB(θ, λ) distribution together with some well-known

unit-distributions in literature to three real data sets. Their fits are obtained

by considering the maximum likelihood method. They are compared based on

some statistical model selection tools. The pdfs of the competitor distributions

are defined as follows:

1. Unit-Burr XII distribution (UBXIID) by [12]:

f(x;α, β) = αβx−1(− lnx)β−1
(
1 + (− lnx)β

)−(α+1)
;

2. Unit-Burr III distribution (UBIIID) by [15]:

f(x;λ, β) = λβx−2
(
x−1 − 1

)β−1 (
1 + (x−1 − 1)β

)−(λ+1)
;

3. Continuous Bernoulli distribution reported in [19] (see (1.1)).

Data set 1: The first set of data consists of the time to infection of kidney

dialysis patients during the months reported in [11]. The data set is: 2.5, 2.5,

3.5, 3.5, 3.5, 4.5, 5.5, 6.5, 6.5, 7.5, 7.5, 7.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 12.5,

13.5, 14.5, 14.5, 21.5, 21.5, 22.5, 22.5, 25.5, 27.5. Employing a similar idea in [2],

we transform the data set to lie within the interval [0,1] by dividing its values

by an arbitrary number slightly higher than the maximum values in the data set.

Having the highest number in the data set as 27.5, we divide by 30, yielding

the following unit data set: 0.08333333, 0.08333333, 0.11666667, 0.11666667,

0.11666667, 0.15000000, 0.18333333, 0.21666667, 0.21666667, 0.25000000,

0.2500000, 0.2500000, 0.2500000, 0.28333333, 0.31666667, 0.35000000, 0.3833333,

0.41666667, 0.41666667, 0.4500000, 0.48333333, 0.4833333, 0.71666667,

0.71666667, 0.75000000, 0.75000000, 0.85000000, 0.91666667.

Data set 2: The second data set is the records of 72 exceedances of flood peaks

(in m3/s) of the Wheaton river near Carcross in the Yukon Territory, Canada for
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the years 1958-1984. The data set was first used by [5] to illustrate the potential

of the generalized Pareto distribution. The same transformation technique is

performed on the data set to obtain a unit data set as: 0.026153846 0.033846154

0.221538462 0.016923077 0.006153846, 0.316923077, 0.081538462, 0.010769231,

0.029230769, 0.200000000, 0.184615385, 0.143076923, 0.021538462, 0.287692308,

0.130769231, 0.392307692, 0.178461538, 0.216923077, 0.340000000, 0.016923077,

0.038461538, 0.221538462, 0.026153846, 0.578461538, 0.009230769, 0.033846154,

0.600000000, 0.004615385, 0.230769231, 0.169230769, 0.112307692, 0.352307692,

0.026153846, 0.001538462, 0.016923077, 0.009230769, 0.138461538, 0.026153846,

0.107692308, 0.309230769, 0.006153846, 0.043076923, 0.216923077, 0.152307692,

0.160000000, 0.164615385, 0.461538462, 0.055384615, 0.086153846, 0.473846154,

0.204615385, 0.064615385, 0.392307692, 0.052307692, 0.183076923, 0.330769231,

0.424615385, 0.560000000, 0.041538462, 0.984615385, 0.023076923, 0.038461538,

0.421538462, 0.015384615, 0.416923077, 0.310769231, 0.258461538, 0.081538462,

0.149230769, 0.423076923, 0.038461538, 0.415384615.

Data set 3: The third data set represents the waiting times (in minutes)

before service of 100 bank customers. [8] used the data set to show that the

Lindley distribution is a better model than the exponential distribution in real

life data fitting. Again, after the transformation, we obtain a unit data set as:

0.0200, 0.0200, 0.0325, 0.0375, 0.0450, 0.0475, 0.0475, 0.0525, 0.0650, 0.0675,

0.0725, 0.0775, 0.0800, 0.0825, 0.0875, 0.0900, 0.1000, 0.1025, 0.1050, 0.1050,

0.1075, 0.1075, 0.1100, 0.1100, 0.1150, 0.1175, 0.1175, 0.1200, 0.1225, 0.1225,

0.1250, 0.1325, 0.1375, 0.1425, 0.1425, 0.1525, 0.1550, 0.1550, 0.1550, 0.1575,

0.1675, 0.1725, 0.1775, 0.1775, 0.1775, 0.1775, 0.1850, 0.1900, 0.1925, 0.2000,

0.2050, 0.2150, 0.2150, 0.2150, 0.2200, 0.2200, 0.2225, 0.2225, 0.2375, 0.2400,

0.2425, 0.2450, 0.2675, 0.2725, 0.2750, 0.2750, 0.2775, 0.2800, 0.2800, 0.2875,

0.2975, 0.3100, 0.3125, 0.3225, 0.3250, 0.3275, 0.3325, 0.3400, 0.3425, 0.3475,

0.3525, 0.3850, 0.3850, 0.4325, 0.4325, 0.4525, 0.4550, 0.4600, 0.4725, 0.4750,

0.4975, 0.5150, 0.5325, 0.5350, 0.5475, 0.5750, 0.6750, 0.7900, 0.8275, 0.9625.
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4.2 Statistical results

The MLEs, estimated Log-likelihood (LogL), Akaike information criterion (AIC),

Kolmogorov-Smirnov (K − S) and Cramér-von-Mises (W ∗) test statistics of the

distributions for the three data sets under study are presented in Tables 2 - 4.

These model selection criteria will be used to ascertain the model that best fits

the data sets. Hereafter, we shall denote the T CB(θ, λ) distribution as TCBD for

convenience’s sake.

Table 2: Summary statistics for data set 1.

Distributions MLEs LogL AIC K − S W ∗

(p− value) (p− value)
TCBD θ = 0.9630 3.0344 -2.0688 0.1280 0.0954

λ = 0.6088 (0.7479) (0.6109)

UBXIID α = 1.1075 1.3736 1.2526 0.1663 0.2023

β = 2.0977 (0.4204) (0.2638)

UBIIID λ = 0.6266 2.8522 -1.7044 0.1592 0.1746

β = 1.5534 (0.4766) (0.3237)

CBD θ = 0.1783 2.5733 -1.1466 0.1526 0.1136

(0.5314) (0.5249)
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Table 3: Summary statistics for data set 2.

Distributions MLEs LogL AIC K − S W ∗

(p− value) (p− value)
TCBD θ = 0.2657 49.1144 -94.2288 0.1331 0.2029

λ = 0.0118 (0.1557) (0.2621)

UBXIID α = 0.4235 34.8783 -65.7567 0.1593 0.5366

β = 2.9667 (0.0516) (0.0319)

UBIIID λ = 0.2167 43.0243 -82.0486 0.1361 0.3801

β = 2.0738 (0.1386) (0.0813)

CBD θ = 0.0056 48.8068 -93.6136 0.1464 0.2351

(0.0910) (0.2087)

Table 4: Summary statistics for data set 3.

Distributions MLEs LogL AIC K − S W ∗

(p− value) (p− value)
TCBD θ = 0.9491 43.0725 -82.1450 0.1360 0.3951

λ = 0.2212 (0.0594) (0.0742)

UBXIID α = 0.5417 31.5278 -59.0556 0.1649 0.8902

β = 3.4227 (0.0087) (0.0044)

UBIIID λ = 0.2897 33.3206 -62.6481 0.1907 1.1323

β = 2.3714 (0.0013) (0.0012)

CBD θ = 0.0251 41.9787 -81.9574 0.1544 0.5365

(0.0169) (0.0340)
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4.3 Discussion of the results

The applicability of a statistical model in real-life data analysis is judged based

on how small the goodness-of-fit test statistics values are. According to Tables 2

- 4, the T CB(θ, λ) distribution has the highest estimated log-likelihood value and

the lowest value in terms of AIC, K − S, and W ∗ test statistics with the highest

corresponding p − value, making the model the most appropriate model to be

considered in analyzing the data sets under study. It is the only distribution with

p-values superior to 0.05 in data set 3, validating its distributional adequacy. We

further accessed the performance of the T CB(θ, λ) distribution over the competitor

distributions based on a graphical representation. Figures 2 - 4 display the

probability-probability (P-P) plots of the distributions for the three data sets,

respectively.

Figure 2: P-P plots of the distributions for data set 1.
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Figure 3: P-P plots of the distributions for data set 2.
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Figure 4: P-P plots of the distributions for data set 3.

According to these figures, the fit of the T CB(θ, λ) distribution matches the

fit of the data sets better than the other distributions under consideration. Thus,

validating the claim that the T CB(θ, λ) distribution is the best model to fit the

three data sets under study.

5 Concluding Remark

In this paper, we have introduced the two-parameter transmuted continuous

Bernoulli distribution applicable for fitting proportional data sets. It was

represented by T CB(θ, λ), with θ and λ as distribution parameters. Plots of the

probability density function reveal that the T CB(θ, λ) distribution accommodates

exponentially decreasing (reversed-J), left-skewed and right-skewed unimodal

shapes. On the other hand, the hazard rate function can exhibit bathtub-shapes

http://www.earthlinepublishers.com



Theory and Applications of the Transmuted Continuous Bernoulli ... 405

or increase in shapes. These unique features are essential in analyzing increasing

failure rate data sets. A Monte Carlo simulation study has been conducted

to illustrate the performance of the maximum likelihood estimates of the

unknown parameters of the T CB(θ, λ) distribution. Finally, the potentiality

of the T CB(θ, λ) distribution in real-life data fittings was examined using

three proportional data sets, and the results obtained reveal that the proposed

distribution provides consistently better fits than the competitive distributions.

The perspectives for probability and statistics applications of the T CB(θ, λ)

distribution, such as deep data fitting, regression modeling and machine learning

applications, are numerous, and this paper provides the first steps in that

direction.
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