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Abstract

In this paper, we establish general differential summation formulas for integration by

parts (IBP), more importantly a powerful tool that promotes exploration and creativity.

1. Introduction

Definition 1.1. A differential calculus is a branch of mathematics concerned with the

determination, properties and application of derivatives and differentials.

Definition 1.2. An integral calculus or antiderivative or primitive assigns numbers to
functions in a way that can be described as displacement, area, volume and other
concepts that arise by combining infinitesimal data. Integration is one of the two main
operations of calculus, with its inverse, differentiation. Integration without limits is
called indefinite integrals, while integration with limit is called definite integrals. It is the

fundamental theorem of calculus that connects differentiation with the definite integrals.

Definition 1.3 (Fundamental Theorem of Calculus 1). If fis a continuous real-valued

function defined on a closed interval [a, b], then, once an antiderivative F of fis known,
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the definite integral of f over that interval is given by
[ 7y = OIS = F(2) - Fla).

By product rule, if f(x) and g(x) are differentiable functions, then

—(f(¥)g(x)) = £(x)g'(x) + £'(x) g (x).
Integrating both sides, we have

[r()e dx+jf (x)dr = £(x)g (),

[ 7@ g (d = F(x)s() - [ r(x)glx

Let u = f(x) and v = g(x). Then we obtain the familiar integration by parts formula
Iudv = uv—‘[vdu. (D)

2. Literature Review

Integral calculus has been the most difficult aspect of mathematics for Secondary
School students and preliminary Higher Institution students, most especially integration
by parts. Students often find it very difficult in the choice of u# and dv. Horowitz [3] gives
the technique called tabular integration by parts, the method was used to solve some
difficult integration by parts, not only that, the method was used to proof some
mathematical formulas such as Laplace Transforms Formula, Taylor’s Formula, and
Residue Theorem for Meromorphic Functions Formula. Knill [4] used the integration by
parts formula and tabular integration by parts to solve integration by parts problems, the
two results shows that tabular integration by parts is so powerful, not time consuming
and reliable. Murty [1] illustrated the procedure of integration by parts with five
examples of the type

j x?% sin xdx, J-ex sin xdx, j x%1n xdx, j sin? xdx, j sin 3x cos Sxdx.

The method of tabular integration by parts was used to solve the problems.
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The general formula for integral by parts of the form Ieax cos bxdx and

J e™ sin bxdx is given by

ax
I, = je“x cos bxdx = (bsin bx + a cos bx) + c, (2)
612 +b2

ax
I, = J'e“x sin bxdx = (a'sin bx - bcos bx) + c. 3)
a’ +b?

Equations (2) and (3) can be applied directly to solve problems like

5 er
Je * sin 3xdx = .

(2sin3x —3cos3x) +c.

Find the Fourier cosine transform of f(x) = ¢ 2% + 4¢ %

2 (o)
F(s) = _I X) cos sxdx
ORREY\E
:\/ZI (e_zx +4e_3x)cossxdx
TtJO
:\/ZJ‘ e_zxcossxdx+\/§j 4e_3xcossxdx
TJ0 Yo
S RS
mls2+4 s2+9)

This paper gives some formulas to evaluate integration by parts without thinking about

the choose of u and dv. Students with no background in integration can also make use of
the formulas in solving their integration by parts problems.

3. Main Results

Our main results were proved by the principle of mathematical induction.

Theorem 3.1. I[f n UN and a # 0, then

C 1 d
Ix” sin axdx = Z P ——

= aZr+1 dx”

(- cos ax). 4)
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Proof. Let equation (4) be P(n). Consider P(1), we obtain

. 1 d"
jx sin axdx = Z Up xlr (= cos ax)
2r+l1 dx"
r=0 a X

i

a2

(- ax cos ax + sin ax) + c.

Hence, P(1) is true. Assuming, P(k) is true for some k O N,

r

(- cos ax). (5)

k
. - 1
xK sin axdx = E kp xk=r
2r+l dx"
r=0 a X

Consider P(k +1) and apply equation (5), we have the following

jxkﬂ sinax = uy — jvdu

. 1
u=x*"1 du=(k +1)x* and dv = sinax, v = -=cosax
a

1
-— xk+1 cosax +

a a

1
j x* cos axdx

+ _
= —lxk+1 cosax + k 1[lxk sin ax —Jlkxk Usin axdx}

a a lLa a
1 k+1 . k(k +1 -1 .

= —— X" cosax + 3 x¥ sin ax —%J.xk Usin axdx
a a a
1 k+1 .

= ——xk+1 cos ax +—xk sin ax
a a2

k-1
_ Kk +1) Zk_lP Xk L_d (- cos ax)
a2 ~ r a2 A

k+1 1 d’
Zk+1Prxk+l_rW (_ COS ax).
= a”"" dx"

Since P(k +1) is true, also true for all values of n O N. O
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Theorem 3.2. If n UN and a # 0, then

c 1 d’
jx" cos axdx = Z P T (sin ax).
r=0

Proof. See Theorem 3.1.
Theorem 3.3. I[f n ON and a # 0, then
= 1

n _ n n-r _
Ix cosh axdx = Z P.x e (-1)
r=0

,d

- (sinh ax).
dx

Proof. (By induction) Denote equation (7) by Q(n). Consider Q(1), we have

r

choshaxdx ZIP 1=r 21“( 1)" dr(sinhax)
r=0 dx

1 .
=— (axsinh ax — cosh ax) + c.

Hence, Q(1) is true. Assuming, Q(k) is true for some k O N, then

.
jx cosh axdx = Zkka d 2i+1( )" d (sinh ax).

r=0 dx"
Consider Q(k + 1) using equation (8), we obtain the following

J.xk+1 coshax = uv — Ivdu

1
u = x*1 du = (k +1)x* and dv = cosh ax, v = —sinh ax

a
= lxk+1 sinh ax — I jxk sinh axdx
a a
+
= lxkﬂ sinh ax — k+l [1 k cosh ax - J kx* 71 cosh axdx}
a a lLa
+ + _
= l x**1 sinh ax ——— ! x¥ cosh ax + k(k—z,l) I xk ! cosh axdx
a a a

(6)

(7

®)
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1 .
=~ x**lginh ax -

a a

1
xK cosh ax

k_l r
k(k +1 k- k—1- 1 d .
+¥ E Lp xk=1=r g (-1 (sinh ax)

a3 dx"
k+1 1 d’
= Z k+1P,xk+1_r (-1)" (sinh ax).
2r+l1 dx”
r=0 a X

Since Q(k + 1) is true, also true for all values of n [J N.

Theorem 34.If n UN and a # 0, then

n r
- 1 d
x" sinhaxdx = ) "P.x""" (-1)" (cosh ax).

Proof. See Theorem 3.3.

Theorem 3.5. If n ON and a # 0, then

C 1 d
Ixneaxdx = eaxz (-1 (x™).

= ar+1 dx”
Proof. Denote equation (10) by C(n). Consider C(1), we obtain
1

J.xeaxdx = eaxZ(— 1)" L d (x) = a%(ax -1) +c.

= ar+1 dx"

Hence, C(1) is true. Suppose, C(k) is true for some k (O N, then

k

J.xkeaxdx = eaxZ(— 1)" L d (xk).

r+1 r
=0 a = dx

Consider C(k +1) using equation (11), we obtain

J-xkﬂe“x =uv - Jvdu

(©))

(10)

Y
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u=x* gy = (k + l)xk and dv = e*, v = leax

a
+
— lxkﬂeax _ujeaxxkdx
a a
L g+ (k 1) wx k
= 1kl ax _ axz - (x )
4 r=0 a’" dx"
el k+) =, v 1 d"
sl L Gty ) )
a a - ar+1 dx”
r=0
k+1 Lt
_ ax +
- Z( T ( )
Hence, C(k +1), also true for all values of n O N. a
Theorem 3.6. If n O N, then
n+l
Ix" In xdx = S+ Dinx - 1], (12)
(n+1)
Proof. Let equation (12) be D(n). Consider D(1), we have
)C2
lenxdx = T(Zlnx -1)+
Hence, D(1) is true. Suppose that D(k) is true for some k O N,
‘ xk+1
.[x Inx = i+ 1) -1]. (13)
(n+1)
Consider D(k +1) using equation (13), we obtain the following
.[xkﬂ In xdx = uv - Ivdu
u=Inxv= l and dv = xk+1, y = ;xk”dx
X k+2
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= kaﬂ Inx — LJ. Ky

k+2
b ke k2

k+2 (k +2)?

1 k+2

= ———x""[(k +2)Inx - 1].

(k +2)

Since D(k +1) is true, also true for all values of n O N.

4. Applications

Example 4.1. Determine the total charge entering a terminal between ¢ = 1s and

t = 2s if the current passing the terminal is i = (3t> - t)e! Ampere.

Solution. The total charge entering terminal is given by
1
Q= j i(t)dt
o
2
= L (32 = 1)e' dt

2 2
= L 3t2e! dt —L te' dt.

By Theorem 3.5, we obtain

0 =3(> -2t +2)e — (¢ - 1)e'}
= 5¢% - 3e
= 28.7904350092761 Couloumbs.

Example 4.2. Evaluate J x2 sin 3xdx.

Solution. Instead of using equation (1), we can apply Theorem 3.1 directly by taking
n =2 as follows:

http://www.earthlinepublishers.com
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- 1 d’
x" sin axdx = Z "pxt" —— (= cos ax)
2r+1 dx"
r=0 a X

p
Jx sin 3xdx = ZZP 2o 21+1 dr( cos 3x)
dx
r=0

2
xz(— cos3x)+2xii( cos 3x) +2id—( cos 3x)
3% dx 3° dx?

W | =

= —lx2 cos3x +gxsin3x +icos3x +c.
3 27

You can solve the above problem using equation (1) and compare the results.

Example 4.3. Find the energy delivered to an element at t = 3s if the current

entering its positive terminal is i = 5cos60T Ampere and the voltage across its
terminals is 3¢°.

Solution. Using energy formula and Theorem 3.2, we obtain

h
E = 1Vdt
0]

3
= I015t3 cos(60Tr) dt

3
_ (1800°¢” ~ 1) cos(607w) + 60(600C+> ~ Tu)sin(60Tw)
144000rt* 0
=0.0113986 Joules.

Example 4.4. Integrate j x2 cos 3xdkx.

Solution. Theorem 3.2 can be applied directly by taking n =2 and a =3, we

obtain

< 1 d’
Ix” cos axdx = Z Pt gy d—(sm ax)
r=0

Earthline J. Math. Sci. Vol. 2 No. 2 (2019), 461-472
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: 1 d’
_[xz cos 3xdx = Z 2px>T —— (sin 3x)

= a2r+1 dx"
1 5 1 d 1 d?

= — x” sin 3x + 2x — — (sin 3x) + 2— ——(sin 3x)
3 33 dx 37 di?

=21 (sin 3x) + 2xt (3cos3x) + L (- 95sin 3x)
3 33 3

x? sin 3x +gxcos3x —isin3x +c.
9 27

wl»—a

Example 4.5. Evaluate J e dx.

Solution. Using Theorem 3.5 with n = 3 and a = 3, we obtain

n

J‘xneaxdx:eaxZ(_l)r 1 d’ (xn)

r+l r
=0 a = dx

= ar+1 dx”
_ezx(lx3 —§x2+§x—3)
2 4 4 8
er
= g (4x3—6x2+6x—3)+c

1
Example 4.6. Integrate J . x2(1 = x) cos mTud.
Solution. Let

1
a, = —[0 x2(1 = x) cos mTixdx

1
= J (x% cos mTi — x° cos mTtx) dx
0
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r

2

_ 2, 2- 1 d .

= 2[ E P.x~" 57 (71)" — (sin mm)
r=0

(mm) dx

3, 3-r | rd
ZPX 2r+1(1)_

dx”

(sin mT[x)]

2 3

x2 . 2x 2 .
= 2| —sin mTx + cos mTlx — sin mTx
{m" (mm) (m) }

X . 352 6x . 6
— 2| —sin mTx + 2cosmT[x— 3smmT[x— 4cosmTDc
mTt (mm) (mm) (mm)

{MJ{ (-1, 61" 6 J

(mm)?

20" 12y,

(mm)®  (mr)®

We can see clearly from the above examples that the method of summation is faster and

reliable than using equation (1).
5. Conclusion

The research shows the direct application of the differential summation formula in
solving integration by parts (IBP). Students can solve problems on integration by parts
without any basic knowledge in integration but in differentiation. The formula
P(x=7r)="C,p"q""" can be used to evaluate expansion, find coefficient of any
powers and even the constant term of an expansion. These theorems can also be used to
find the coefficient of any power and the constant term in any integration by parts

without necessarily integrate completely.
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