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Abstract 

In this paper, we establish general differential summation formulas for integration by 

parts (IBP), more importantly a powerful tool that promotes exploration and creativity. 

1. Introduction 

Definition 1.1. A differential calculus is a branch of mathematics concerned with the 

determination, properties and application of derivatives and differentials. 

Definition 1.2. An integral calculus or antiderivative or primitive assigns numbers to 

functions in a way that can be described as displacement, area, volume and other 

concepts that arise by combining infinitesimal data. Integration is one of the two main 

operations of calculus, with its inverse, differentiation. Integration without limits is 

called indefinite integrals, while integration with limit is called definite integrals. It is the 

fundamental theorem of calculus that connects differentiation with the definite integrals. 

Definition 1.3 (Fundamental Theorem of Calculus 1). If f is a continuous real-valued 

function defined on a closed interval [ ],, ba  then, once an antiderivative F of f is known, 
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the definite integral of f over that interval is given by 

( ) ( ) ( ) ( )∫ −=|=
b

a

b
a aFbFxFdxxf .  

By product rule, if ( )xf  and ( )xg  are differentiable functions, then 

( ) ( )( ) ( ) ( ) ( ) ( ).xgxfxgxfxgxf
dx

d ′+′=  

Integrating both sides, we have 

( ) ( ) ( ) ( ) ( ) ( )∫ ∫ =′+′ ,xgxfdxxgxfdxxgxf  

( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ′−=′ .dxxgxfxgxfdxxgxf  

Let ( )xfu =  and ( ).xgv =  Then we obtain the familiar integration by parts formula 

 ∫ ∫−= .vduuvudv   (1) 

2. Literature Review 

Integral calculus has been the most difficult aspect of mathematics for Secondary 

School students and preliminary Higher Institution students, most especially integration 

by parts. Students often find it very difficult in the choice of u and dv. Horowitz [3] gives 

the technique called tabular integration by parts, the method was used to solve some 

difficult integration by parts, not only that, the method was used to proof some 

mathematical formulas such as Laplace Transforms Formula, Taylor’s Formula, and 

Residue Theorem for Meromorphic Functions Formula. Knill [4] used the integration by 

parts formula and tabular integration by parts to solve integration by parts problems, the 

two results shows that tabular integration by parts is so powerful, not time consuming 

and reliable. Murty [1] illustrated the procedure of integration by parts with five 

examples of the type 

∫ ∫ ∫ ∫ ∫ .5cos3sin,sin,ln,sin,sin 222
xdxxxdxxdxxxdxexdxx

x  

The method of tabular integration by parts was used to solve the problems. 
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The general formula for integral by parts of the form ∫ bxdxe
ax cos  and 

∫ bxdxe
ax sin  is given by 

 ( )∫ ++
+

== ,cossincos
22

cbxabxb
ba

e
bxdxeI

ax
ax

n   (2) 

 ( )∫ +−
+

== .cossinsin
22

cbxbbxa
ba

e
bxdxeI

ax
ax

n   (3) 

Equations (2) and (3) can be applied directly to solve problems like 

( )∫ +−= .3cos33sin2
13

3sin
2

2
cxx

e
xdxe

x
x  

Find the Fourier cosine transform of ( ) xx
eexf

32
4

−− +=  

 ( ) ( )∫
∞

π
=

0
cos

2
sxdxxfsF  

( )∫
∞ −− +

π
=

0

32 cos4
2

sxdxee
xx  

∫ ∫
∞ ∞ −−

π
+

π
=

0 0

32 cos4
2

cos
2

sxdxesxdxe
xx  

.
9

6

4

12
2

22 






+
+

+π
=

ss
 

This paper gives some formulas to evaluate integration by parts without thinking about 

the choose of u and dv. Students with no background in integration can also make use of 

the formulas in solving their integration by parts problems. 

3. Main Results 

Our main results were proved by the principle of mathematical induction. 

Theorem 3.1. If N∈n  and ,0≠a  then 

 ( )∫ ∑
=

+
− −=

n

r
r

r

r

rn
r

nn
ax

dx

d

a
xPaxdxx

0
12

.cos
1

sin   (4) 
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Proof. Let equation (4) be ( ).nP  Consider ( ),1P  we obtain 

( )∫ ∑
=

+
− −=

1

0
12

11 cos
1

sin

r
r

r

r

r
r ax

dx

d

a
xPaxdxx  

( ) .sincos
1

2
caxaxax

a
++−=  

Hence, ( )1P  is true. Assuming, ( )kP  is true for some ,N∈k  

 ( )∫ ∑
=

+
− −=

k

r
r

r

r

rk
r

kk
ax

dx

d

a
xPaxdxx

0
12

.cos
1

sin   (5) 

Consider ( )1+kP  and apply equation (5), we have the following 

∫ ∫−=+
vduuvaxx

k sin1  

,1+= k
xu  ( ) k

xkdu 1+=  and ,sin axdv =  ax
a

v cos
1−=  

∫
++−= +

axdxx
a

k
axx

a

kk cos
1

cos
1 1  






 −++−= ∫ −+
axdxkx

a
axx

aa

k
axx

a

kkk sin
1

sin
11

cos
1 11  

( )
∫ −+ +−++−= axdxx

a

kk
axx

a

k
axx

a

kkk sin
1

sin
1

cos
1 1

22

1  

axx
a

k
axx

a

kk sin
1

cos
1

2

1 ++−= +  

( ) ( )∑
−

=
+

−−− −+−
1

0
12

11

2
cos

11
k

r
r

r

r

rk
r

k
ax

dx

d

a
xP

a

kk
 

( )∑
+

=
+

−++ −=
1

0
12

11 .cos
1

k

r
r

r

r

rk
r

k
ax

dx

d

a
xP  

Since ( )1+kP  is true, also true for all values of .N∈n  □ 
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Theorem 3.2. If N∈n  and ,0≠a  then 

 ( )∫ ∑
=

+
−=

n

r
r

r

r

rn
r

nn
ax

dx

d

a
xPaxdxx

0
12

.sin
1

cos   (6) 

Proof. See Theorem 3.1. □ 

Theorem 3.3. If N∈n  and ,0≠a  then 

 ( ) ( )∫ ∑
=

+
− −=

n

r
r

r
r

r

rn
r

nn
ax

dx

d

a
xPaxdxx

0
12

.sinh1
1

cosh   (7) 

Proof. (By induction) Denote equation (7) by ( ).nQ  Consider ( ),1Q  we have 

( ) ( )∫ ∑
=

+
− −=

1

0
12

11 sinh1
1

cosh

r
r

r
r

r

r
r ax

dx

d

a
xPaxdxx  

( ) .coshsinh
1

2
caxaxax

a
+−=  

Hence, ( )1Q  is true. Assuming, ( )kQ  is true for some ,N∈k  then 

 ( ) ( )∫ ∑
=

+
− −=

k

r
r

r
r

r

rk
r

kk
ax

dx

d

a
xPaxdxx

0
12

.sinh1
1

cosh   (8) 

Consider ( )1+kQ  using equation (8), we obtain the following 

∫ ∫−=+
vduuvaxx

k cosh1  

( ) kk
xkduxu 1,1 +== +  and ax

a
vaxdv sinh

1
,cosh ==  

∫
+−= +

axdxx
a

k
axx

a

kk sinh
1

sinh
1 1  






 −+−= ∫ −+
axdxkx

a
axx

aa

k
axx

a

kkk cosh
1

cosh
11

sinh
1 11  

( )
∫ −+ +++−= axdxx

a

kk
axx

a

k
axx

a

kkk cosh
1

cosh
1

sinh
1 1

22

1  
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axx
a

k
axx

a

kk cosh
1

sinh
1

2

1 +−= +  

( ) ( ) ( )∑
−

=
+

−−− −++
1

0
12

11

2
sinh1

11
k

r
r

r
r

r

rk
r

k
ax

dx

d

a
xP

a

kk
 

( ) ( )∑
+

=
+

−++ −=
1

0
12

11 .sinh1
1

k

r
r

r
r

r

rk
r

k
ax

dx

d

a
xP  

Since ( )1+kQ  is true, also true for all values of .N∈n  □ 

Theorem 3.4. If N∈n  and ,0≠a  then 

 ( ) ( )∫ ∑
=

+
− −=

n

r
r

r
r

r

rn
r

nn
ax

dx

d

a
xPaxdxx

0
12

.cosh1
1

sinh   (9) 

Proof. See Theorem 3.3. □ 

Theorem 3.5. If N∈n  and ,0≠a  then 

 ( ) ( )∫ ∑
=

+−=
n

r

n

r

r

r

raxaxn
x

dx

d

a
edxex

0
1

.
1

1   (10) 

Proof. Denote equation (10) by ( ).nC  Consider ( ),1C  we obtain 

( ) ( ) ( )∫ ∑
=

+ +−=−=
1

0
21

.1
11

1

r
r

r

r

raxax
cax

a
x

dx

d

a
edxxe  

Hence, ( )1C  is true. Suppose, ( )kC  is true for some ,N∈k  then 

 ( ) ( )∫ ∑
=

+−=
k

r

k

r

r

r

raxaxk
x

dx

d

a
edxex

0
1

.
1

1   (11) 

Consider ( )1+kC  using equation (11), we obtain 

 ∫ ∫−=+
vduuvex

axk 1  
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( ) kk
xkduxu 1,1 +== +  and axax

e
a

vedv
1

, ==  

( )
∫

+−= +
dxxe

a

k
ex

a

kaxaxk 11 1  

( ) ( ) ( )∑
=

+
+ −+−=

k

r

k

r

r

r

raxaxk
x

dx

d

a
e

a

k
ex

a
0

1

1 1
1

11
 

( ) ( ) ( )











−+−= ∑

=
+

+
k

r

k

r

r

r

rkax
x

dx

d

aa

k
x

a
e

0
1

1 1
1

11
 

( ) ( )∑
+

=

+
+−=

1

0

1

1
.

1
1

k

r

k

r

r

r

rax
x

dx

d

a
e  

Hence, ( ),1+kC  also true for all values of .N∈n  □ 

Theorem 3.6. If ,N∈n  then 

 
( )

( )[ ]∫ −+
+

=
+

.1ln1
1

ln
2

1

xn
n

x
xdxx

n
n   (12) 

Proof. Let equation (12) be ( ).nD  Consider ( ),1D  we have 

( )∫ +−= .1ln2
4

ln
2

cx
x

xdxx  

Hence, ( )1D  is true. Suppose that ( )kD  is true for some ,N∈k  

 
( )

( )[ ]∫ −+
+

=
+

.1ln1
1

ln
2

1

xn
n

x
xx

k
k   (13) 

Consider ( )1+kD  using equation (13), we obtain the following 

∫ ∫−=+
vduuvxdxx

k ln1  

x
vxu

1
,ln ==  and dxx

k
vxdv

kk 21

2

1
, ++

+
==  
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∫
++

+
−

+
= dxx

k
xx

k

kk 12

2

1
ln

2

1
 

( )
2

2

2

2

1
ln

2

1 ++

+
−

+
= kk

x
k

xx
k

 

( )
( )[ ].1ln2

2

1 2

2
−+

+
= +

xkx
k

k  

Since ( )1+kD  is true, also true for all values of .N∈n  □ 

4. Applications 

Example 4.1. Determine the total charge entering a terminal between st 1=  and 

st 2=  if the current passing the terminal is ( ) t
etti −= 23  Ampere. 

Solution. The total charge entering terminal is given by 

 ( )∫= 1

0

t

t
dttiQ  

( )∫ −=
2

1

23 dtett
t  

∫ ∫−=
2

1

2

1

2 .3 dttedtet
tt  

By Theorem 3.5, we obtain 

( ) ( ) 2
1

2
1223 |−−+−= tt

etettQ  

ee 35 2 −=  

7617904350092.28=  Couloumbs.  

Example 4.2. Evaluate ∫ .3sin2
xdxx  

Solution. Instead of using equation (1), we can apply Theorem 3.1 directly by taking 

2=n  as follows: 
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( )∫ ∑
=

+
− −=

n

r
r

r

r

rn
r

nn
ax

dx

d

a
xPaxdxx

0
12

cos
1

sin  

( )∫ ∑
=

+
− −=

2

0
12

222 3cos
1

3sin

r
r

r

r

r
r x

dx

d

a
xPxdxx  

 ( ) ( ) ( )x
dx

d
x

dx

d
xxx 3cos

3

1
23cos

3

1
23cos

3

1

2

2

53

2 −+−+−=   

 .3cos
27

2
3sin

9

2
3cos

3

1 2
cxxxxx +++−=  

You can solve the above problem using equation (1) and compare the results. 

Example 4.3. Find the energy delivered to an element at st 3=  if the current 

entering its positive terminal is ti π= 60cos5  Ampere and the voltage across its 

terminals is .3
3

t  

Solution. Using energy formula and Theorem 3.2, we obtain 

∫= 1

0

t

t
IVdtE  

( )∫ π=
3

0

3 60cos15 dttt  

( ) ( ) ( ) ( )
3

0
4

3322

144000

60sin6006060cos11800

π
ππ−π+π−π= ttttt

 

0113986.0=  Joules. 

Example 4.4. Integrate ∫ .3cos2
xdxx  

Solution. Theorem 3.2 can be applied directly by taking 2=n  and ,3=a  we 

obtain 

( )∫ ∑
=

+
−=

n

r
r

r

r

rn
r

nn
ax

dx

d

a
xPaxdxx

0
12

sin
1

cos  
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( )∫ ∑
=

+
−=

2

0
12

222 3sin
1

3cos

r
r

r

r

r
r x

dx

d

a
xPxdxx  

( ) ( )x
dx

d
x

dx

d
xxx 3sin

3

1
23sin

3

1
23sin

3

1

2

2

53

2 ++=  

( ) ( ) ( )xxxxx 3sin9
3

1
23cos3

3

1
23sin

3

1

53

2 −++=  

.3sin
27

2
3cos

9

2
3sin

3

1 2
cxxxxx +−+=  

Example 4.5. Evaluate ∫ .23
dxex

x  

Solution. Using Theorem 3.5 with 3=n  and ,3=a  we obtain 

( ) ( )∫ ∑
=

+−=
n

r

n

r

r

r

raxaxn
x

dx

d

a
edxex

0
1

1
1  

( ) ( )∫ ∑
=

+−=
3

0

3

1

223 1
1

r
r

r

r

rxx
x

dx

d

a
edxex  








 −+−=
8

3

4

3

4

3

2

1 232
xxxe

x  

( ) .3664
8

23
2

cxxx
e

x

+−+−=  

Example 4.6. Integrate ( )∫ π−
1

0

2 .cos1 xdxmxx  

Solution. Let 

( )∫ π−=
1

0

2 cos1 xdxmxxam  

( )∫ π−π=
1

0

32 coscos dxxmxxmx  
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( )
( ) ( )






π−

π
= ∑

=
+

−
2

0
12

22 sin1
1

2

r
r

r
r

r

r
r xm

dx

d

m
xP  

( )
( ) ( )






π−

π
−∑

=
+

−
3

0
12

33 sin1
1

r
r

r
r

r

r
r xm

dx

d

m
xP  

( ) ( )

1

0
32

2

sin
2

cos
2

sin2











π

π
−π

π
+π

π
= xm

m
xm

m

x
xm

m

x
 

( ) ( ) ( )

1

0
432

23

cos
6

sin
6

cos
3

sin2











π

π
−π

π
−π

π
+π

π
− xm

m
xm

m

x
xm

m

x
xm

m

x
 

( )
( )

( )
( )

( )
( ) ( ) 














π
−

π
−+

π
−−−














π
−=

4422

61613
2

12
2

mmmm

mmm

 

( )
( ) ( )

(( ) ).11
1212

42

1

−−
π

+
π

−=
+

m
m

mm
 

We can see clearly from the above examples that the method of summation is faster and 

reliable than using equation (1). 

5. Conclusion 

The research shows the direct application of the differential summation formula in 

solving integration by parts (IBP). Students can solve problems on integration by parts 

without any basic knowledge in integration but in differentiation. The formula 

( ) rnr
r

n
qpCrxP

−==  can be used to evaluate expansion, find coefficient of any 

powers and even the constant term of an expansion. These theorems can also be used to 

find the coefficient of any power and the constant term in any integration by parts 

without necessarily integrate completely. 
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