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Abstract

Let T,,(R) be the upper triangular matrix ring over a unital commutative ring whose

characteristic is not a divisor of m. Suppose that f : T,(R) — T,(R) is an additive map

such that X" f(X) = f(X)X™ for all X OT,(R), where m 21 is an integer. We

consider the problem of describing the form of the map X - f(X).

1. Introduction and Results

For a ring R we say that the map f: R — R is commuting if [f(x), x] =0 for
every x (R, where [a, b] = ab —ba denotes the standard commutator. The study of

such maps was inspired by Posner [13] who proved that if a prime ring has a nonzero
centralizing derivation, then it must be commutative. This theorem was generalized in
many ways (see for instance [1, 10, 11, 12, 15]). The first general result regarding
commuting maps comes from BreSar [4] who has shown that additive commuting maps f
over a simple unital ring R must be of the form f(x) =Ax+p: R - Z(R), where

Z(R) denotes the center of R. This form is usually called a standard form for the

commuting map.

There are plenty of results on commuting maps (for example [7, 8, 9, 16]) and the
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readers are referred to the survey paper [5] for acquaintance with the development of the

theory of commuting maps and the various results that have been established.

In 2000, Beidar et al. [2] proved that a similar result holds true over 7,.(F), the ring
of rxr upper triangular matrices over a field F. Their work showed that any linear
commuting map f :T,(F) —» T,.(F) is again of the standard form, so f(x) = Ax + p(x)
for some A O F and linear map W :T,(F) — Z(T,(F)). In [6] Cheung extended this

result to triangular algebras.

Recently, in [3], Bounds extended some of these results to the case N, (F) - the ring

of strictly upper triangular matrices over a field F of characteristic zero. The author

proved that if f : N,.(F) - N,(F) is a commuting linear map, then there exists A 0 F
and an additive map W : N,(F) - Q such that f(x) = Ax + pu(x) for all x O N,(F),
where Q ={ae; ,_| +bey , +cey , :a,b,cOF} and ¢; ; denotes the standard matrix

unit.
For a positive integer m, a map f : R — R is said to be m-power commuting if

[£(x), x™] =0 for all x OR. Clearly, every commuting map is a 1-power commuting

map. In [17] Bresar and Hvala studied 2-power commuting additive maps and showed
that if R is a prime ring with the extended centroid C, charR =2 and f: R - R is a

2-power commuting additive map, then there exist A C and an additive map
d: R - C suchthat f(x) = Ax+d(x) for all x 0 R. Later, Beidar et al. [18] extended

this result to m-power commuting additive maps and proved that if R is a prime ring with
the extended centroid C, charR =0 or charR>m and f:R — R is an m-power

commuting additive map, then there exist A J C and an additive map &: R - C such
that f(x) = Ax +8(x) for all x O R. Recently, in [19], Liu and Yang characterize the

m-power commuting additive maps on invertible or singular matrices.
In this paper, we examine m-power commuting additive maps over the ring of upper
triangular matrices 7,(R) over a commutative ring R whose characteristic is not a

divisor of m. Precisely, we will show that the following theorems are true.

Theorem 1. Let R be a commutative ring. If f :T,(R) - T,(R) is an additive
commuting map, then there exist N 0 R and an additive map &:T,(R) —» R such that
f(X)=AX +3d(X)I, forall X OT,(R).
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Theorem 2. Let R be a commutative ring whose characteristic is not a divisor of m.

If f:T,(R) > T,(R) is an additive m-commuting map, then there exist A 0 R and an
additive map & : T, (R) - R such that f(X)=AX +8(X)I, forall X OT,(R).

2. Preliminaries and Commuting Additive Maps of 7, (R)

We denote by T,(R) a set of upper triangular matrices over a commutive ring R. For

I<i<j by e; we mean the matrix unit - the matrix whose only nonzero entry is 1 in
the (i, j)th position. It is known that the product of e; and ey is equal to

ejj X ey = O jrey, where Jj; is the Kronecker delta.

For any A = (a;;) OT,(R), to abbreviate notation and facilitate calculations, we will
write A = zlsistn ajie; j. In particular, we put I, = 2?21 e; ; and we write
Z(T,(R)) for the center of T, (R), Z(T,,(R)) = RI,,.

In order to prove our main result, we first need to establish following lemmas.

Lemma 2.1. Suppose that f :T,(R) - T,(R) is an additive map satisfying
Xf(X)=f(X)X for all X OT,(R)). Then f(X)Y + f(¥Y)X - Xf(¥Y)-Yf(X)=0
forall X,Y OT,(R).

Lemma 2.2. Suppose that f :T,(R) - T,(R) is an additive map satisfying
Xf(X) = f(X)X forall X OT,(R) and r OR. Then there exists A J R such that
f(rl,) = A,

Proof. Let rOR for every X OT,(R), f(X)(rI,)+ f(r1,)X = Xf(rI,) -

(r1,)f(X) =0. Then [f(rI,), X] =0. Thus, f(rl,) O Z(T,(R)). Consequently, there
exists A O R such that f(rl,) = Arl,,.

Lemma 2.3. Suppose that f :T,(R) - T,(R) is an additive map satisfying
Xf(X) = f(X)X forall X OT,(R). Then f(ae;;) is a diagonal matrix with o O R,
flae;)e; = e;f(ae;) and f(ae;)(ae;) = (ae;) f(oe;) for all distinct integers i, j

with1<i< j<n.
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Proof. Write f(ae;)=2_ _ . ali(a)e, s, where each a’:F - F is an
additive map for 1 < s <t < n. We have (ae;) f(ae;) = f(ae;)(ae;) and a # 0. This

implies that f((xel-l-)eii = eiif(deii).

Let j be an integer such that 1< j with j #i. Then we have ¢;f(de;)e i =

ejjf((]el-l-)el-l- = 0. This lmplles a;;' (G) = a;; (G) =0.

Let j, k be an integer such that 1 < j, k with j, k #7 and o # 0. For X = ag;

and Y = e jj» we have

flae;)(oe;;) + flaej;)(ae;) = (ae;) f(ae;) = (ae ;) f(ae;) =0
we obtain
eif(ae ;) +ejif(ae;) = flaej)e; + f(ae;)e ;.

Multiplying by ey from the left and by e; from the right, we get ey f(0e;)e;; = 0.

This implies a,’;j (a) =0. Thus f(oe;) is a diagonal matrix, as desired. Write
flae;) = 1Sr5na£ir(a)er,r' From f(ae; +1,)(ae; +1,) = (ae; +1,) f(ae; +1,)
we have f(ae;)(ae;) = (ae;) f(oe;) and a #0. This implies f(ae;)e; =

eijf(aeij)'

Lemma 2.4. For all o O R, there exist \; UR, d; : R — R additive map such that

f(ae;;) = Nae; +8;(a)l, for all integers i with i > 1.

Proof. Write f(oe;) =2 _ _ ai"r(a)er,, for all distinct integers i, j, k with

(k <1, # i), we have
flae;)Bey —Bey f(ae;) + f(Bey)ae; —ae; f(Bey) = 0.

Multiplying by e;; from the left and by e;; from the right, we get

agy (@)Bey — Bajj (@) ey = 0.
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This implies al, (o) = ali (a) = &;(a), it follows that

floe;) = Zaf};’(a) er., = (afi (@) = &;(a))e; + ()1,

1€r<n

For all distinct integers i, j with (i < j) we have
f(aeii) Bezjf(aeu) + f(Bezj) aeuf(Bezj)
Multiplying by ¢;; from the left and by e ; from the right, this implies
aji (0)Be;; —BS;(a)e;; — ae;i f(Bejj)eji =0,

it follows that a! (o)B - BS; (o) - O(a” (B) = 0. Thus for B =1 we get

afj(a) - &;(a) = aajl(1) = ah;.
Hence f(O(el-l-) = G)\ieii + 5,(0()In
Lemma 2.5. For all a, B O R, for all distinct integers i, j with 1 i < j < n, then

there exists N U R, and the additives maps 9;, a;; :R > R such that f(de;) = Nae;;
+8;(0)1, and f(Bey) = NBe; +aii (B)1,.

Proof. Write f(ae;) =2 _ _ all(a)e, s, for all distinct integers i, j with

1 £i < j £ n. Then by assumption,
f(ae; +Bey) (aey; +Be;;) = (ae;; +Beyj) f(ae; + Peyy).
Hence,
fBej)oe; + f(ae;)Be; = ae; f(Be;j) + Bejj f (atey;).
Multiplying by ¢; from the left and by e ;; from the right, this implies that
eii f(ae;;)Be; = ae;if(Bejj)e; + Beyf(ae)e;,

we obtain A;B = a/ ([3)
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For k <i. Multiplying by ey, from the left and by ¢;; from the right, this implies
aff (B) =
For i <1 (I # j). Multiplying by e; from the left and by ¢; from the right, this

implies ajl(B) =0.

Similarly, using f(ae; + Be;;)(ae; +Be;;) = (ae; +Be;) f(0e;; +Be;;) we have
BA; = al(B). Hence BA; = a/ (B) = BA;.
We notice A =A; =A;. In particular, f(ae;) =Aoe; =8;(a)l, for k< j,

(k #i), by assumption, f(Be;)oe; + f(ae;)Be; = ae;if(Be;) + Beyf(0e ;).

Multiplying by ey, from the left and by e from the right, hence f(Be;)ae;

+ f(oe;)Be; = ae; f(Be;) + Beyf(ae;).

Ji

Multiplying by e; from the left and by e;; from the right, this implies that

ag (B) = 0.

Ji

Similarly, using for j <[, (I # i) multiplying by e from the left and by ¢; from
the right, it follows that aij:l (B) =o0.

Let I <k and O{i, j}. From f(ey + ae;) (e + ae;) = (e + O(eij)f(ekk +ae;;)

and multiplying by e; from the left and by ey, from the right, we get a ([3)

Hence f(Belj (B €jj Zl<ra (B Crr

From f(Be;)(ae;) = (Be;) f(ae;), multiplying by e; from the left and by e ;
from the right, we get al (B) = a% B).

From f(ae; +Bey)(ae; +Be;) = (ae; +Bey;) f(ae; +Bey;). Multiplying by ¢

from the left and by e; from the right, we get all J(0)B = Ba (a) Then

Ji

f(Bey) = all B)e; +all(B)1, = f(Bey) = BAey +all(B)1,,.

http://www.earthlinepublishers.com



m-commuting Additive Maps on Upper Triangular Matrices Rings 511

Proof of Theorem 1. Suppose that f : T,,(R) — T, (R) is an additive map satisfying
Xf(X)=f(X)X forall X OT,(R). Weput X = ZlSiSan ajie; ;» then

fxX)=r injei,j

1<i<j<n
Z fxiei )
1<i<j<n
= Z xuetz Zf Xij€i, _]
1<i<n 1<l<_]<l’l

Z ()\xue + 6 ) n) + inj)\eij + ag(xtj)ln

1<i<n 1<i<j<n
=AX + Z 8; (x;i) 1, + Zalj( xij) 1y
1<i<n ISi<_/SVl
= AX +38(X)1,

This proves Theorem 1.

3. m-commuting Additive Maps of 7, (R)

Lemma 3.1. Let m be a natural number and let R be a commutative ring whose

characteristic is not a divisor of m. Suppose that f : T,(R) - T,(R) is an additive map
satisfying X™ f(X) = f(X)X™ for all X OT,(R) and rOR, then f(rl,)0
Z(T,(R)).
Proof. Let a, B O R. Moreover, let i < j. Clearly,
(ae;j +Ble)” fae; +Bl,) = (e + Bl )™ foe; +BI,).
This implies

(maBm_leij + Bmln)f(aeij + Bln) = f(aeij + Bln)(maﬁm_leij + Bmln)'
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Hence
e;f(oe; +Bl,) = flae; +Bl,)e;.
Similarly, using r, a, B 0 R we obtain
ejf(ae; +(B+r)1,) = f(ae; +(B+r)l,)e;.
The difference of above two relations yields e f(rl,) = f(rl,)e;, then f(rl,)0
Z(T,(R)).

Lemma 3.2. Let m be a natural number and let R be a commutative ring whose

characteristic is not a divisor of m. Suppose that f : T,(R) - T,(R) is an additive map
satisfying X" f(X) = f(X)X™ for all X OT,(R), then Xf(X)= f(X)X for all
X OT,(R).

Proof. We have X" f(X) = f(X)X™ forevery X OT,(R). Clearly,

[F(X). (X + p1,)"] +[f(pL,). (X + p1,,)"] = 0.

Recall that f(rl,) 0 Z(T,,(R)). Thus,
—k ~k k1 —
D e lr(x) xF]=o.
1<k<msn
Using matrix notation we can rewrite these systems in the following way: For

p=Lp=2.,p=m-1

1cl, 1c icl, e ( [F(x), X]
omlel gmm2e2 om3ed e || [F(X), X7
gmlel gm=202 am=3c3 yem | [p(X), X3] | = 0.
mm_1C,1n mm—ZCr%l mm—SC’i 1Cn”f [f(X),Xm]

Because the determinant of the Vandermonde matrix formed by the coefficients of the

system is not zero, we get that [f(X), X] = 0. This proves Theorem 2.
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