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Abstract

In this paper, we give an overview of the main directions in the theory of fixed points of
multivalued mappings. We prove a fixed point theorem of multivalued mapping and the

following lemma has important role in the proof of main theorem.

1. Introduction and Preliminaries

The study of the immobile problem is important for applications such as the points of
multivalued mappings are devoted, starting with the works of von Neumann [3],
Kakutani [2], Wallace [4], Eilenberg-Montgomery [1] and other.

Let X, Y be metric spaces, K be a compact subset in X and f:X - Y be a

continuous mapping.

Lemma 1. For any & >0, there exists € >0 such that as soon as p(x', x") <€ and

X', x"OUg(K), then p(f(x'), f(x")) <d.
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Proof. Let & be an arbitrary positive number and the set K be compact. Then, there

exists N >0 such that for any y;, y, JK as soon as p(y;, yp) <n, we have

NfUﬂfb@D<g

Let x be an arbitrary point of K. Then, by the continuity of the mapping f, there is an
open neighborhood Uy (y)(x) of point x such that for any x;, x; ODUy(y)(x), the

inequality

(£ (). £(xn)) < g

n

Without loss of generality, we can assume that 0 < A(x) < 3

It is obvious that the family {Uy(,)(x)} ,gx forms an open cover of the space X.

Let U = UU A(x) (x), this set is open and contains K. The set K is a compact, and
x0K

there is a number n; >0 such that Un(K) O U. Consider € = min{%, nl}. We show
that this number satisfies the conditions of the lemma.

Let ', x"UUg(K). Then there are yj, y, 0K such that x'OUy(y)(v1),
X"OUy(y,)(32)- If p(x', x") <&, then
p(f () £ (") < p(F (). £ () +p(f (31): £ (32)) +p(f (v2). £ (x"))
We note that
, 0
p(f ('), £ () < 3
and

P () SN <2,

The values of p(f(y;), f(y2)), we note that

P(y1. y2) < p(yp. x') +p(x', x") + p(x", y2) <A(y) +€+A(y2) <n,
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and

p(f (), f(x2)) <

W o

Therefore,
p(f(x). f(x") <8
The lemma is proved.

Lemma 2. Let T be a closed convex bounded subset of the Banach space E,

F:T - K(E) be completely continuous multivalued mapping.

If for any & >0 there is an unambiguous d-approximation of fg map F having a

fixed point, then the map F also has a fixed point.

Proof. Consider an arbitrary sequence of positive integers ,, that tends to zero. Let
f51 = f,, be a unique d,-approximation satisfying the conditions of the lemma. Let x,
— the fixed point of the map is f,, ie. f,(x,)=x, By definition of a unique

d-approximation, there are points x,, and y, such that
2, =% | < 80 v, O F(x;) and |2 =y <8,

Since the map F is completely continuous, the set F(T) is relatively compact. Using the
fact that the points y, 0 F(T), and without limitation of generality, we assume that the
sequence {y,} converges to the point y. Hence the sequences {x,} and {x,} also
converge to this point. The sequence {x,} O T, the point y also belongs to this set. Now
the statement of the lemma follows from the closure graphics of an upper semi-

continuous of a multivalued map F.

Let X be a metric space and ®: X — K(E) be an upper semicontinuous multivalued
map.

Definition 1. A multivalued map @ is called a super positionally approximable
multivalued map (SA-map), if there is metric space Y, the Michael’s correct system
AM (Y) in space Y, semi-continuous of a upper semi-continuous of a multivalued map
F:X - AM(Y), a continuous uniquely map p:Y — E such that for any point x [ X
there is true equality ®(x) = p(F(X)).
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A multivalued map @ is called a completely continuous SA map if the multivalued

map F:X - AM(E) is completely continuous.

2. Main Result

From the above, we drive the main theorem which can be regarded as an extension of

the most fixed point theorem.

Theorem. Let T be a closed convex bounded subset of the Banach space E and
®:T - K(E) be a multivalued completely continuous SA-map. If ®(T) O T, then the
map ® has a fixed point.

Proof. Let 1: E - T be a continuous retraction of space E by 7, and | be an

arbitrary positive number. By the boundedness of the set 7, there is a number R >0,

such that Up,(T) O Bg[0].

Let @ = pyF, where p and F are from Definition 1. Consider the continuous map

py=Tand p:Y - T, where K = F(T) O Y. By the impact of the complete continuity
of the map F, the set K is compact, there for the impact of Lemma 1 for any 81(0, )
there is €>0 such that as soon as p(x',x")<e and x',x"0Ug(K), then
p(p(x'), p1(x")) <3 Without limitation of generality, we assume that € < &, which

results that in a multivalued mapping F' there is a completely continuous €-approximation

of f:T - Y. We show that the composition f; = p;. fis a completely continuous
d-approximation of the map ®; = p;F. We assume that, let x be an arbitrary point of 7,
and according to the definition of €-approximation, there exists a point x' (07, y 0 F(x')

such that | x —x'| <€ and p(f(x); y) <€, therefore, f(x) DUg(K). Then
| (£ ()= P (¥)| <&
Since py(y)0 py(F(x')) = @;(x'), f; which results a continuous 8-approximation.

From the compactness of the f;-map and the compactness of the f-map, we note that

f1(Bg[0]) O Bg[0]. And, for x O BR[0] we have

A1) =1(p(f(x)) 0T O Bgl0].

http://www.earthlinepublishers.com



About One of a Fixed Point Theorem 543

Thus according to Schauder’s theorem, the map f; has a fixed point, and by Lemma 2,
the multivalued map ®; has a fixed point. We let xgO®;(x) = T(P(x)). Since
xpgOT, we have T(P(x)) = ®(xp). This proves the theorem.
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