Earthline Journal of Mathematical Sciences
ISSN (Online): 2581-8147

Volume 2, Number 2, 2019, Pages 545-555
https://doi.org/10.34198/ejms.2219.545555

L-Fuzzy Ideals in Couple [ -Semirings

Clement Boateng Ampadu

31 Carrolton Road, Boston, MA 02132-6303, USA
e-mail: drampadu @hotmail.com

Abstract

Let M be a [-semiring. In this paper we obtain some properties of L-fuzzy ideals in

M x M. Our results take inspiration from [1]. The readers are left with a conjecture.

1. Introduction and Preliminaries

Definition 1.1 [1]. A partially ordered set (poset) is a pair (X, <), where X is a
nonempty set and < is a partial order (a reflexive, transitive, and antisymmetric binary
relation) on X.

Definition 1.2 [1]. For any subset A of X and x 0 X, we say x is a lower bound
(upper bound) of A if x < a (a £ x respectively) for all a [ A.

Definition 1.3 [1]. A poset (X, <) is called a lattice if every nonempty finite subset
of X has a greater lower bound (glb or infimum) and a least upper bound (lub or
supremum) in X.

Remark 1.4 [1]. Let (X, <) be a lattice. For any a, b0 X, define aCb =
inf{a, b} and a Ob = sup{a, b}, then L and L are binary operations on X which are

commutative, associative, and idempotent and satisfy the absorption law
al(a0b)=a=al(a 0b).
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Example 1.5 [1]. Let (X, [0, 0) be an algebraic system satisfying the properties in

the previous remark, in which the partial order is defined by
a<bh s a=alb s alb=b,
then (X, 00, ) is a lattice.

Definition 1.6 [1]. A lattice (X, [, 0) is called distributive if a O(b Oc) =
(aOb)U(a Oc) for all a, b, c 0 X (equivalently a O (b Oc) = (a Ob) O(a Oc) for
all a, b, c O X).

Definition 1.7 [1]. A lattice (X, [}, 0) is called a bounded lattice if it has the

smallest element 0 and largest element 1, that is, there are elements 0 and 1 in X, such
that 0 < x <1 forall x [ X.

Definition 1.8 [1]. A partially ordered set in which every subset has an infimum and

supremum is called a complete lattice

Definition 1.9 [1]. Two elements a, b of a bounded lattice (L, [} [J, 0,1) are

complements if a Cb =0 and a C b = 1. In this case each of a, b is the complement of
the other.

Definition 1.10 [1]. A complement lattice is a bounded lattice in which every

element has a complement.

Definition 1.11 [2]. A set S together with two associative binary operations called
addition and multiplication (denoted by + and -) is called a semiring provided the
following holds:

(a) addition is a commutative operation,
(b) multiplication distributes over addition both from the left and from the right,
(c) there exists 0 1S suchthat x +0 =x and x [0 =0[x =0 foreach x O S.

Definition 1.12 [2]. Let (M, +) and (I, +) be commutative semigroups. If there
exists a mapping M X[ x M — M (images to be denoted by xay, x, yM,a OI)
satisfying the following axioms for all x, y, zOM and a, B0, then M is called a

[M-semiring
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(@) xa(y + z) = xay + xaz,
(b) (x + y)az = xoz + yaz,
(©) x(a +B)y = xay + 1By,
(d) xa(yBz) = (xay)Bz.

Definition 1.13 [2]. A [-semiring M is said to have a zero element if there exists an
element 0 M suchthat 0+ x =x =x+0 and Oox = xa0 =0, forall x 0 M.

Example 1.14 [2]. Every semiring M is a [-semiring with ' = M and ternary

operation as the usual semiring multiplication.

Example 1.15 [2]. Let M be a [-semiring, and A be a nonempty subset of M. A is
called a ["-subsemiring of M if A is a sub-semigroup of (M, +) and AT'A O A.

Definition 1.16 [2]. Let M be a [-semiring. A subset A of M is called a left (right)
ideal of M if A is closed under addition and MTA O A (ATM O A). Moreover, we say

A is an ideal of M if it is both a left ideal and right ideal.
Definition 1.17 [3]. Let M be a nonempty set, a mapping f : M — [0, 1] is called a
Sfuzzy subset of M.

Definition 1.18 [3]. Let f be a fuzzy subset of a nonempty set M, for ¢ [0, 1], the

set
fo= e OM : £(3) 2 1)
is called a level subset of M with respect to f.
Definition 1.19 [4]. Let M be a [-semiring. A fuzzy subset [ of M is said to be a
Sfuzzy I -subsemiring of M if it satisfies the following conditions
(@) u(x +y) 2 min{u(x). u(y)}.
(b) u(xay) = min{p(x), u(y)}, forall x, yOM, a OT.

Definition 1.20 [4]. Let M be a [-semiring. A fuzzy subset [ of M is said to be a
fuzzy left (right) ideal of M if for all x, y UM and a OT the following conditions hold
(@ H(x +y) 2 min{p(x), u(y)},

(b) p(xay) = p(y) (K(x)).
Earthline J. Math. Sci. Vol. 2 No. 2 (2019), 545-555
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Definition 1.21 [4]. Let M be a [-semiring. A fuzzy subset U of M is said to be a
fuzzy ideal of M if for all x, y UM and a OTI the following conditions hold

(a) W(x + y) 2 min{pu(x), p(y)},

(b) u(xay) = max{u(x), u(y)}-

Definition 1.22 [2]. Let M be a [-semiring. An ideal I of M is called a k-ideal if for
all x, yOM,x+yUOI and y O/ implies x O 1.

Definition 1.23 [3]. Let M be a [-semiring. A fuzzy subset p: M [0, 1] is

nonempty if |l is not the constant function.

Definition 1.24 [3]. Let M be a I'-semiring. For any two fuzzy subsets A, | of M,
A O 1 means A(x) < p(x) forall x O M.

Definition 1.25 [4]. Let M be a [-semiring, and let f, g be fuzzy subsets of M. Then
f o g is defined as

(fog)z)= {Supl:x“y {min{f(x), s(¥)}}

0 otherwise

f + g is defined as

0 otherwise

(f +e)2) = {Sup““y{min{f (x), g(»}}}

f U g isdefined as

(f U g)(z) = max{f(z), g(z)}
and f () g is defined as

(f N g)(z) = min{f(2), g(2}}
x,yM,aOTl, forall zOM.

Definition 1.26 [2]. A function f : R — M, where R and M are -semirings is said
to be a I-semiring homomorphism if f(a + b) = f(a) + f(b) and f(a0b) = f(a)af(b)
forall ¢, pPOR, and a OT.
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Definition 1.27 [4]. Let A be a nonempty subset of a [-semiring M. The

characteristic function of A is a fuzzy subset of M, and is defined by

1 if xOA

0 otherwise.

xAn={

Definition 1.28 [4]. Let M be a [ -semiring, “0” be the zero element in M, and fbe a
fuzzy ideal of M. We say fis a k-fuzzy ideal of M if f(x + y) = £(0) and f(y) = £(0)

implies f(x) = f£(0) forall x, y O M.

Definition 1.29 [4]. Let M be a [ -semiring, and f'be a fuzzy ideal of M. We say fis a
fuzzy k-ideal of M if

f(x) 2 min{f(x +y), f(y)}

forall x, y(OM.

2. Main Results

Notation 2.1. L = (L, <, [, 0) will denote a complemented lattice.
Notation 2.2. M will denote a ['-semiring, and its zero element will be denoted “0”.
Definition 2.3. A mapping U : M x M +— L will be called a L-fuzzy subset of M 2,

Definition 2.4. A L fuzzy subset L of M x M will be called a L-fuzzy -subsemiring

of M? if the following conditions are satisfied:

(@) u(x +y, 2 +m) = min{p(x, 2), u(y, m)},

(b) u(xay, zam) = min{u(x, z), u(y, m)}, forall (x, z), (v, m) OM xM,a OT.

Definition 2.5. A L-fuzzy [-subsemiring of M x M, |, will be called a L-fuzzy left
(right) ideal of M ? if

W(xoy, zom) 2 u(y, m) (u(x, 2)).

Moreover if p is a fuzzy left and fuzzy right ideal of M X M, then p will be called a

L-fuzzy ideal of M 2,
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Theorem 2.6. Let U be a L-fuzzy ideal of M x M. Then W(x, y) < (0, 0) for all
(x, y)OM x M.

Proof. Let (x, y)OM xM, oOl. Now observe that p(0, 0) = u(0ax, Oay)
> Y(x, y), therefore p(x, y) < (0, 0), forall (x, y)OM x M.

Theorem 2.7. | is a L-fuzzy left ideal of M? iff for t O L such that Y, # O, W, is
aleftideal of M X M .

Proof. (=) Let p be a L-fuzzy left ideal of M x M and ¢ 0 L be such that p, # [J.
Let (x, z), (v, m) O 1,, then it follows that

u(x, z), u(y, m) 2 1

W(x +y, z +m) 2 min{u(x, 2), W(y, m)} 2 1.

Let (x,z)OM xM,(y,m)0Y,, and aOT, then p(xay, zam)=u(y, m)=t. It
follows that xay, zom U ,. Therefore |, is a left ideal of M x M.

(OJ) Suppose that |, is a left ideal of M x M. Let (x, z), (y, m)OM xM and
t = min{y(x, z), 4(y, m)}. Then

u(x, z), u(y, m) 2 1

-
(x, 2) (v, m) O py
-
M(x+y, z+m) 21t
=

u(x + 3, z +m) = min{u(x, 2), u(y, m}.
Now let (x, z), (y, m) O M2,

H(y, m) =s
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=
(v, m) O pg
=
xoty, zom U
=

u(xay, zam) 2 s = p(y, m).
It follows that p is a L-fuzzy left ideal.
Theorem 2.8. Define My, ={(x, y) OM x M |u(x, y) = u(0, O)}. If wis a L-fuzzy
ideal of M x M, then M, is an ideal of M2

Proof. Let W be a L-fuzzy ideal of M x M and (x, z), (y, m) O M, then it follows

that

H(x, z) 2 u(0, 0), u(y, m) =2 p(0, 0)
which implies that
W(x +y. 2 +m) 2 min{p(x, 2). u(y, m)} = (0. 0)
which implies that
(x+y, z+m)OM,.
Now observe that
W(xay, zam) 2 min{u(x, z). u(y, m)} 2 u(o. 0)

implies that

(xay, zam) O M.

Now let (x, z) O My, (v, m)OM, and a OT, then it follows that
H(x, z) 2 u(0, 0)

which implies

m(yox, maz) = y(x, z) = p(0, 0)
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which implies

(yox, maz) O M.
Similarly, we have

(xay, zam) O M.

It now follows that M M is an ideal of M x M.

Theorem 2.9. Let | and Y be two L-fuzzy ideals of M X M, then WY is a L-fuzzy
ideal of M x M.

Proof. Let (x, z), (y, M) OM x M, and o OT, then we have the following
(MY (x+y, z+m)=min{u(x + y, z +m), y(x +y, z + m)}
= min{min{u(x, z), u(y, m)}, min{y(x, 2), y(y, m)}}
= min{min{u(x, z), y(x, 2)}, min{u(y, m), y(y, m)}}

= min{(u Ny) (x, 2), (LNY) (y, m)}.
On the other hand

() (xay. zam) = min{p(xay, zam), y(xay, zam)}

vV

min{max{u(x, z), u(y, m)}, max{y(x, z). (v, m)}}

max{min{p(x, z), y(x, 2)}, min{u(y, m), y(y, m)}}
max{(L N Y) (x, 2). (LOY) (3, m)}-

It now follows that W (1Y is a L-fuzzy ideal of M x M.

Definition 2.10. Let M be a I'-semiring, and p be a L-fuzzy ideal of M x M. We say
wis a L-fuzzy k ideal of M? if

H(x, z) 2 min{p(x + y, z +m), u(y, m)}

for all x, y, z, m M. Moreover, if u(x +y, z+m) =0, u(y, m) =0 = p(x, z) =0,
then we say pisa L — k fuzzy ideal of M x M.
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Theorem 2.11. Let M be a I -semiring, and let f and g be L-fuzzy k ideals of M2
Then f g is a L-fuzzy k ideal of M 2,

Proof. Let M be a -semiring, and let f and g be L-fuzzy k ideals of M 2, By the

previous theorem, f () g is a L-fuzzy k ideal of M 2 Let X, ¥, z, m 0 M, and observe

we have the following

(f N g)(x, 2) = min{f(x, 2), g(x, 2)}
2 min{min{f (x + y, z + m), f(y, m)}, min{g(x +y, z +m), g(y, m)}
2 min{min{f(x + y, z + m), g(x + y, z + m)}, min{ f (y, m), g(y, m)}}
=min{(f N g)(x +y, z+m), (f N g)(y. m}.

Hence f g is a L fuzzy k ideal of M x M.

Definition 2.12. Let X be a set and | be a L-fuzzy subset of X x X, and a, b U L.
The mapping ug XXX b L, pg/l XXX > L, and u%g X xX > L will be

called a fuzzy type translation, a fuzzy type multiplication, and a fuzzy type magnified

translation of [ respectively, if forall x, z UM,
uh(x, z) = u(x, z) Oa
Mp' (v, 2) = b Ou(x, 2)
W7 (x. 2) = (b Ou(x. 2)) D

Theorem 2.13. Let M be a I -semiring, and let L be a L-fuzzy subset of M X M, and
let a O L. Wis a L-fuzzy ideal of M x M iff pg is a L-fuzzy ideal of M x M.

Proof. (=) Suppose n is a L-fuzzy ideal of M xM. Let x, y,z, mOM and

o OT. Now observe we have the following
Mo (x+y, z+m)=pux+y, z+m)Oa

= min{u(x, z), W(y, m)} Oa
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= min{p(x, z) Oa, P(y, m) O a}

= min{p? (x, z), W2 (y, m)}.
On the other hand

ul (xay, zam) = p(xay, zam) Oa
2 min{p(x, z), p(y, m)} Ua
= min{u(x, z) Da, W(y, m) Od}
= minfj, (x, ). Mg (7. m)}.
It now follows that |.1£ is a L-fuzzy ideal of M x M.

(8) Suppose that a O L, pg is a L-fuzzy ideal of M x M. Let x, y, z, m UM and
o Or. Now

G (x+ y, z+m) 2 min{u] (x, 2), pf (v, m)}

=
W(x +y, z+m)Oa 2 min{u(x, z) Oa. u(y, m) Da}
=
H(x + y, z +m)Oa 2 min{u(x, 2), u(y, m)} Oa
=
W(x + . 2 +m) 2 min{p(x, 2). u(y, mj}.
On the other hand
Mg (xaty, zam) = max{ig (x, 2), g (v, m)}
=
u(xay, zam) Oa = max{u(x, z) Oa, u(y, m) Oa}
=

u(xay, zam) Oa = max{u(x, z), W(y, m)} Oa
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=

u(xay, zam) = max{u(x, z), p(y, m)}.

It now follows that p is a L-fuzzy ideal of M x M.
3. Open Problem

Conjecture 3.1. Let M be a I -semiring, and let u be a L-fuzzy subset of M x M,
and a O L. Then wis a L-fuzzy k ideal of M x M iff ug is a L-fuzzy k ideal of M X M.

4. Concluding Remarks

The present paper has introduced a concept of L-fuzzy ideals in couple I-semirings,
and investigated some of their properties. Finally, we have a left the reader with an open
problem inspired by Theorem 3.20 [1].
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