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Abstract

In this paper, a new lifetime distribution known as the Shifted Weibull (SHW)

distribution with a shift parameter that does not necessarily determine

the lower boundary of the support variable is proposed and studied. The

study is motivated by the Shifted Exponential (SHE), Shifted Exponential-G

(SHE-G) family of distributions and centred on shift parameter that is

estimable. Some properties were derived. Estimation techniques namely;

the maximum likelihood, least squares, weighted least squares, maximum

product spacing, Cramer-von-Mises, Anderson-Darling and the right-tailed

Anderson-Darling estimations are used. Two real data sets were deployed

to show the usefulness and superiority of the proposed distribution relative

to the parent distribution and other competing distributions. The weighted

least squares estimator gave the best classical estimates of the parameters

compared to other methods considered.

1 Introduction

In probability modeling of life phenomena, researchers often define the range of

the values of the support variable in the interval (0,∞). However, this situation
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do not really hold as portrayed in the literature. Therefore, such models are not

usually the exact representation of realities which consequently increase the degree

of uncertainty in the inference made based on such models. The primary purpose

of shifted distributions therefore is to take into consideration the uniqueness of

every data set encountered in modeling. To this end, the shift parameter is used

to adequately represent the actual initial boundary of the support variable in

probability modeling. This dimension in modeling is recently receiving great

attention in the statistical literature.

Many useful generalizations of existing distributions have advanced the field of

probability distribution in the recent times. Notable among them are Klakattawi

et al. [1], Aljarrah et al. [2], Alzaghal et al. [3], Shah et al. [4], Zubair et al.

[5], Torrisi [6]. Few decades ago, generating new distributions by extensions,

modification and other innovative approaches have dominated the literature. A

number of works are worthy of mention.

Eghwerido et al. [7] proposed the Shifted Exponential-G family of

distribution using Exponential distribution as the parent distribution. Eghwerido

and Agu [8] proposed the shifted-Gompertz-G family of distribution using

Gopertz distribution as the parent distribution. Torrisi [6] studied the

Coulomb-Boltzmann-Shifted distribution. Onyekwere and Obulezi [9] introduced

Chris-Jerry distribution. Onyekwere et al. [10] modified Shanker distribution

using quadratic rank transmutation map. Anabike et al. [11] studied inference

on the parameters of Zubair-Exponential distribution using the survival times

of guinea pigs. Ashour and Eltehiwy [12] developed the Exponentiated

power Lindley distribution. Warahena-Liyanage and Pararai [13] proposed a

generalized power Lindley distribution with applications. MirMostafaee et al. [14]

studied the exponentiated generalized power Lindley distribution: Properties

and applications. Jan et al. [15] worked on the Exponentiated inverse power

lindley distribution and its applications. Crow and Shimizu [16] introduced

the Lognormal distributions. Heyde [17] further investigated a property of the

lognormal distribution. Cohen and Whitten [18] explored the estimation in the

three-parameter lognormal distribution. Zeghdoudi et al. [19] developed the
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Lindley pareto distribution. Lazri and Zeghdoudi [20] further investigated the

Lindley-Pareto distribution with its properties and application. Asgharzadeh

et al. [21] developed the Pareto Poisson-Lindley distribution with applications.

Cakmakyapan and Gamze [22] proposed the Lindley family of distributions with

the properties and applications. Other relevant studies include Musa et al. [23],

Musa et al. [24], Innocent et al. [25] and Obulezi et al. [26].

The remainder of this paper is organized in the following order. In Section

2, we derived the shifted distribution with visualization of the density function,

distribution function, reliability function and hazard function. In Section 3, some

useful properties which includes the moment and quantile function, entropy and

the asymptotic behaviour of the shifted weibull distribution was also studied.

In Section 4, we estimate the parameters of the proposed distribution using

seven non-Bayesian approaches. In Section 5, we demonstrated the usefulness

and superiority of the proposed distribution using two real life data sets and the

paper is concluded in Section 6.

2 The Shifted Weibull (SHW) Distribution

Let X ∼Weibull(α, β), then X ∼ SHW (α, β, γ) where γ is the shift parameter if

the probability density function (p.d.f) and the cumulative distribution function

(c.d.f) are defined respectively as

f(x) = αβ(x− γ)β−1e−α(x−γ)
β
; x ≥ γ α, β, γ > 0 (1)

and

F (x) = 1− e−α(x−γ)β . (2)

The survival and hazard rate function are respectively

S(x) = e−α(x−γ)
β

(3)

and

h(x) = αβ(x− γ)β−1. (4)
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The hazard function is such that

lim
x→∞

h(x) =∞; lim
x→γ

h(x) = 0.

This implies that the hazard function can be either a monotone non-decreasing

or a monotone non-increasing function. Similarly

lim
x→∞

F (x) = 1; lim
x→γ

F (x) = 0

and

lim
x→∞

S(x) = 0; lim
x→γ

S(x) = 1.

See graphs below:
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Figure 1
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Figure 4

The hazard rate of the Shifted Weibull distribution is a montone non-increasing

function as well as montone non-decreasing function. This is obvious from the

hazard function plots in Figure 4a and 4b.

3 Properties of the Shifted Weibull Distribution

Definition 3.1. Let X ∼ SHW (α, β, γ), then the rth crude moment is

µ
′
r =

β−1∑
k=0

r+k∑
j=0

(
β − 1

k

)(
r + k

j

)
γβ+r−j−1α

β−j−1
β Γ

(
j + 1

β

)
. (5)

Proof. The rth crude moment of a distribution with p.d.f f(x) is defined as

µ
′
r = E(xr) =

∫ ∞
γ

xrf(x)dx (6)
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substituting the p.d.f of the proposed SHW distribution in equation (1), we have

µ
′
r = αβ

∫ ∞
γ

xr (x− γ)β−1 e−α(x−γ)
β

dx. (7)

Applying binomial expansion yields

µ
′
r =

β−1∑
k=0

(
β − 1

k

)
γβ−k

∫ ∞
γ

xk+re−α(x−γ)
β

dx (8)

let u = α (x− γ)β ; du = αβ (x− γ)β−1 dx

µ
′
r =

1

γα
r+k−β+1

β

β−1∑
k=0

(
β − 1

k

)
γβ−k

∫ ∞
0

u
1
β

(
u

1
β + α

1
β γ
)r+k

e−udu. (9)

Applying binomial expansion, we have

=
1

γα
r+k−β+1

β

β−1∑
k=0

(
β − 1

k

)
γβ−k

r+k∑
j=0

(
r + k

j

)(
α

1
β γ
)r+k−j ∫ ∞

0
u
j
β
+ 1
β
−1
e−udu

=
1

γα
r+k−β+1

β

β−1∑
k=0

(
β − 1

k

)
γβ−k

r+k∑
j=0

(
r + k

j

)(
α

1
β γ
)r+k−j

Γ

(
j + 1

β

)
.

(10)

Therefore

µ
′
r =

β−1∑
k=0

r+k∑
j=0

(
β − 1

k

)(
r + k

j

)
γβ+r−j−1α

β−j−1
β Γ

(
j + 1

β

)
. (11)

Definition 3.2. Let X ∼ SHW (α, β, γ), then the mean of X is given as

µ =

β−1∑
k=0

k+1∑
j=0

(
β − 1

k

)(
k + 1

j

)
γβ−jα

β−j−1
β Γ

(
j + 1

β

)
. (12)

This is obtained by substituting 1 for r in equation (3.1)
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The 2nd, 3rd and 4th crude moments are obtained by replacing r in equation

(3.1) with 2, 3 and 4 respectively. Hence, we obtain

µ
′
2 =

β−1∑
k=0

k+2∑
j=0

(
β − 1

k

)(
k + 2

j

)
γβ+1−jα

β−j−1
β Γ

(
j + 1

β

)
(13)

µ
′
3 =

β−1∑
k=0

k+3∑
j=0

(
β − 1

k

)(
k + 3

j

)
γβ+2−jα

β−j−1
β Γ

(
j + 1

β

)
(14)

and

µ
′
4 =

β−1∑
k=0

k+4∑
j=0

(
β − 1

k

)(
k + 4

j

)
γβ+3−jα

β−j−1
β Γ

(
j + 1

β

)
. (15)

Definition 3.3. Let X ∼ SHW (α, β, γ), then the quantile function is

Q(u) =

[
− ln (1− u)

α

] 1
β

+ γ; where u ∼ U(0, 1). (16)

Proof. Substitute u for F (x) and Q(u) for x in equation (2) being the c.d.f of the

proposed SHW distribution where u ∼ U(0, 1), we obtain

u = 1− e−α(Q(u)−γ)β . (17)

It is easy to see by simplifying (12) that

Q(u) =

[
− ln (1− u)

α

] 1
β

+ γ. (18)

Definition 3.4 (Entropy and Asymptotic Behaviour of SHW Distribution).

Entropy is a measure of the number of ways a system can be arranged, often

taken to be a measure of “disorder”. It is an information measure for non-negative

ω 6= 1. The Rény Entropy for a SHW distributed random variable X is

Rω(x) = lim
n→∞

(
Iω(fn)− log n

)
=

1

1− ω
log

∫ ∞
0

f∞(x)dx. (19)
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For ω → 1, we have the special case of Shannon Entropy Rs(x)

Rω(x) =
1

1− ω
log

∫ ∞
γ

(
αβ (x− γ)β−1 e−α(x−γ)

β
)w

dx

=
1

1− ω
log

[
αwβw

∫ ∞
γ

(x− γ)βw−w e−α(x−γ)
β

dx

]
Let u = αw(x− γ)β

Rω(x) =
1

1− ω
log

[
α
w+1
β βw−1

w
βw−w−1

β

∫ ∞
0

u
w−1−w

β
− 1
β e−udu

]

=
1

1− ω
log

[
α
w+1
β βw−1

w
βw−w−1

β

γ

(
βw − w − 1

β

)]

=
1

1− ω

{
w + 1

w
logα+ (w − 1) log β+

log

[
γ

(
βw − w − 1

β

)]
+
βw − w − 1

β
logw

}

(20)

The asymptotic behavior of the SHW distributed random variable is obtained by

taking the limit of the pdf as x→ 0 and as x→∞.

lim
x→0

αβ(x− γ)β−1e−α(x−γ)
β

= 0 (21)

and

lim
x→∞

αβ(x− γ)β−1e−α(x−γ)
β

= 0. (22)

Definition 3.5 (Distribution of the Order Statistics). Suppose X1, X1, .., Xn is

a random sample of X(r); (r = 1, 2, ..., n) are the rth order statistics obtained

by arranging Xr in ascending order of magnitude 3 X1 ≤ X2 ≤ ... ≤ Xr and

X1 = min(X1, X2, ..., Xr), Xr = max(X1, X2, ..., Xr) then the probability density

function of the rth order statistics is given by

fr:n(x;λ, θ) =
n!

(r − 1)!(n− r)!
fSHW (x;λ, θ)

[
FSHW (x; θ)

]r−1[
1− FSHW (x;λ, θ)

]n−r
.

(23)

where fSHW (x;λ, θ) and FSHW (x;λ, θ) are the pdf and cdf of SHW distribution
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respectively. Hence, we have

fr:n(x;λ, θ) =
n!

(r − 1)!(n− r)!
αβ(x−γ)β−1e−α(x−γ)

β

{
1−e−α(x−γ)

β

}r−1{
e−α(x−γ)

β

}n−r
.

(24)

The pdf of the largest order statistics is gotten by replacing r with n, that is

r = n

fn:n(x;λ, θ) = αβn(x− γ)β−1e−α(x−γ)
β

{
1− e−α)(x−γ)β

}n−1
. (25)

The pdf of the smallest order statistics is gotten by replacing r with 1, that is

r = 1

f1:n(x;λ, θ) = αβn(x− γ)β−1e−α(x−γ)
β

{
e−α(n−1)(x−γ)

β

}
. (26)

4 Classical Methods of Estimation

In this section, we derive the estimates of the parameters using Maximum

Likelihood estimation, Least squares estimation, weighted least squares

estimation, maximum product spacing estimation, cramer von mises estimation,

Anderson Darling estimation and right-tailed Anderson Darling estimation.

Definition 4.1 (Maximum Likelihood Estimation). Let (x1, x2, ..., xn) be n

random samples drawn from SHW distribution. Then the likelihood function
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is given as

` (x;α, β, γ) =
n∏
i=1

fSHW (x;α, β, γ)

=
n∏
i=1

αβ(x− γ)β−1e−α(x−γ)
β

= α2β2e−α
∑n
i=1(x−γ)

β
n∏
i=1

(x− γ)β−1

ln ` = n lnα+ n lnβ − α
n∑
i=1

(x− γ)β + (β − 1)

n∑
i=1

ln (x− γ)

ln `α =
n

β
−

n∑
i=1

(x− γ)β = 0

α̂ =
n∑n

i=1 (x− γ)β

ln `β =
n

β
− α

n∑
i=1

(x− γ)β
n∑
i=1

ln (x− γ) +

n∑
i=1

(x− γ) = 0

ln `γ = αβ

n∑
i=1

(x− γ)β−1 − (β − 1)

n∑
i=1

1

x− γ
= 0

(27)

β and γ has no closed-form solution, hence will be solved iteratively in R using

Newton-Raphson’s iterative algorithm.

We obtain approximate confidence intervals of the parameters based on the

asymptotic distribution of the MLEs of the unknown parameters Φ = (α, β, γ).

The asymptotic variances and covariances of the MLE for parameters α, β and γ

are given by elements of the inverse of the Fisher information matrix. It is not easy

to obtain the exact mathematical expressions for the above-mentioned equations.

Therefore, we give the approximate (observed) asymptotic variance-covariance
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matrix for the MLE, which is obtained by dropping the expectation operator E

I−1ij (α, β, γ) =


[2]ψα ψαβ ψαγ

ψβα [2]ψβ ψβγ

ψγα ψγβ [2]ψγ


−1

=


var(α̂) cov(α̂, β̂) var(α̂, γ̂)

cov(β̂, α̂) var(β̂) cov(β̂, γ̂)

cov(γ̂, α̂) cov(γ̂, β̂) var(γ̂)


(28)

where
[2]ψα = − n

α2

[2]ψβ = − n

β2
− αβ

n∑
i=1

ln (x− γ)
n∑
i=1

(x− γ)β
n∑
i=1

ln (x− γ)

[2]ψγ = −αβ (β − 1)
n∑
i=1

(x− γ)β−2 + (β − 1)
n∑
i=1

1

(x− γ)2

ψαβ = −
n∑
i=1

ln (x− γ)β
n∑
i=1

ln (x− γ)

ψβγ = −αβ (x− γ)β−2 −
n∑
i=1

1

(x− γ)2

ψγα = β
n∑
i=1

(x− γ)β−1 .

(29)

Approximate confidence intervals for α, β and γ can be obtained. Hence, a 100(1−
τ)% confidence intervals for the parameters α, β and γ are

α̂± Z τ
2

√
var(α̂); β̂ ± Z τ

2

√
var(β̂); γ̂ ± Z τ

2

√
var(γ̂) (30)

where Z τ
2

is the percentile standard normal distribution with right-tailed

probability.

Definition 4.2 (Least Squares Estimation (LSE)). The Least Squares Estimation

due to Swain et al. [27] to estimate the parameters of Beta distribution. Using

the deductions from the work of Swain et al. [27], we write

E[F (xi:n|α, βγ)] =
i

n+ 1
.
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V [F (xi:n|α, βγ)] =
i(n− i+ 1)

(n+ 1)2(n+ 2)
.

The least squares estimates α̂LSE , β̂LSE and γ̂LSE of the parameters α, β and γ

are obtained by minimizing the function L(α, β, γ) with respect to α, β and γ

L(α, β, γ) = arg min
(α)

n∑
i=1

[
F (xi:n|α, β, γ)− i

n+ 1

]2
. (31)

The estimates are obtained by solving the following non-linear equations

n∑
i=1

[
F (xi:n|α, β, γ)− i

n+ 1

]2
∆1(xi:n|α, β, γ) = 0

n∑
i=1

[
F (xi:n|α, β, γ)− i

n+ 1

]2
∆2(xi:n|α, β, γ) = 0

n∑
i=1

[
F (xi:n|α, β, γ)− i

n+ 1

]2
∆3(xi:n|α, β, γ) = 0

(32)

where

∆1(xi:n|α, β, γ) = (x− γ)β e−α(x−γ)
β

∆2(xi:n|α, β, γ) = α (x− γ)β ln (x− γ)e−α(x−γ)
β

∆3(xi:n|α, β, γ) = −α (x− γ)β−1 e−α(x−γ)
β

.

(33)

Definition 4.3 (Weighted Least Squares Estimation (WLSE)). The weighted

least squares estimates α̂WLSE , β̂WLSE and γ̂WLSE of SHW distribution

parameters α, β and γ are obtained by minimizing the function W (α, βγ) with

respect to α, β and γ

W (α, β, γ) = arg min
(α,β,γ)

n∑
i=1

(n+ 1)2(n+ 2)

i(n− i+ 1)

[
F (xi:n|θ)−

i

n+ 1

]2
. (34)
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Solving the following non-linear equation yields the estimate

n∑
i=1

(n+ 1)2(n+ 2)

i(n− i+ 1)

[
F (xi:n|θ)−

i

n+ 1

]
∆1(xi:n|θ) = 0

n∑
i=1

(n+ 1)2(n+ 2)

i(n− i+ 1)

[
F (xi:n|θ)−

i

n+ 1

]
∆2(xi:n|θ) = 0

n∑
i=1

(n+ 1)2(n+ 2)

i(n− i+ 1)

[
F (xi:n|θ)−

i

n+ 1

]
∆3(xi:n|θ) = 0

(35)

where ∆1(x.|α, β, γ), ∆2(x.|α, β, γ) and ∆3(x.|α, β, γ) is as defined in (41)

respectively.

Definition 4.4 (Maximum Product Spacing Estimation (MPSE)). A good

substitute for the greatest likelihood approach is the maximum product spacing

method, which approximates the Kullback-Leibler information measure. Let us

now suppose that the data are ordered in an increasing manner. Then, the

maximum product spacing for the SHW is given as follows

Gs(α, β, γ|data) =

(
n+1∏
i=1

Dl(xi, α, β, γ)

) 1
n+1

, (36)

where Dl(xi, α, β, γ) = F (xi;α, β, γ)− F (xi−1;α, β, γ) , i = 1, 2, 3, ..., n.

Similarly, one can also choose to maximize the function

H(α, β, γ) =
1

n+ 1

n+1∑
i=1

lnDi(α, β, γ). (37)

By taking the first derivative of the function H(ϑ) with respect to α, β and γ, and

solving the resulting nonlinear equations, at ∂H(φ)
∂α = 0, ∂H(φ)

∂β = 0 and ∂H(φ)
∂γ = 0,

where φ = (α, β, γ), we obtain the value of the parameter estimates.

Definition 4.5 (Cramér-von-Mises Estimation (CVME)). The Cramér-von-Mises

estimates α̂CVME , β̂CVME and γ̂CVMEof the SHW distribution parameters α, β
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and γ are obtained by minimizing the function C(α, β, γ) with respect to α, β

and γ

C(α, β, γ) = arg min
(α,β,γ)

{
1

12n
+

n∑
i=1

[
F (xi:n|α, β, γ)− 2i− 1

2n

]2}
. (38)

The estimates are obtained by solving the following non-linear equations

n∑
i=1

(
F (xi:n|α, β, γ)− 2i− 1

2n

)
∆1(xi:n|α, β, γ) = 0

n∑
i=1

(
F (xi:n|α, β, γ)− 2i− 1

2n

)
∆2(xi:n|α, β, γ) = 0

n∑
i=1

(
F (xi:n|α, β, γ)− 2i− 1

2n

)
∆3(xi:n|α, β, γ) = 0

(39)

where ∆1(x.|α, β, γ), ∆2(x.|α, β, γ) and ∆3(x.|α, β, γ) is as defined in (32)

respectively.

Definition 4.6 (Anderson-Darling Estimation (ADE)). The Anderson-Darling

estimates α̂ADE , β̂ADE and γ̂ADE of the SHW distribution parameters α, β and

γ are obtained by minimizing the function A(α, β, γ) with respect to α, β and γ

A(α, β, γ) = arg min
(α,βγ)

n∑
i=1

(2i− 1)
{

lnF (xi:n|α, βγ) + ln
[
1− F (xn+1−i:n|α, βγ)

]}
.

(40)

The estimates are obtained by solving the following sets of non-linear equations

n∑
i=1

(2i− 1)

[
∆1(xi:n|α, β, γ)

F (xi:n|α, β, γα, β, γ)
− ∆1(xn+1−i:n|α, β, γ)

1− F (xn+1−i:n|α, β, γ)

]
= 0

n∑
i=1

(2i− 1)

[
∆2(xi:n|α, β, γ)

F (xi:n|α, β, γ)
− ∆2(xn+1−i:n|α, β, γ)

1− F (xn+1−i:n|α, β, γ)

]
= 0

n∑
i=1

(2i− 1)

[
∆3(xi:n|α, β, γ)

F (xi:n|α, β, γ)
− ∆3(xn+1−i:n|α, β, γ)

1− F (xn+1−i:n|α, β, γ)

]
= 0

(41)

where ∆1(x.|α, β, γ), ∆2(x.|α, β, γ) and ∆3(x.|α, β, γ) is as defined in (41)

respectively.
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Definition 4.7 (Right-Tailed Anderson-Darling Estimation (RTADE)). The

Right-Tailed Anderson-Darling estimates α̂RTADE , β̂RTADE and γ̂RTADE of the

SHW distribution parameters α, β and γ are obtained by minimizing the function

R(α, β, γ) with respect to α, β and γ

R(α, β, γ) = arg min
(α,β,γ)

{
n

2
−2

n∑
i=1

F (xi:n|α, β, γ)− 1

n

n∑
i=1

(2i−1) ln
[
1− F (xn+1−i:n|α, β, γ)

]}
.

(42)

The estimates can be obtained by solving the following set of non-linear equations

−2
n∑
i=1

∆1(xi:n|α, β, γ)

F (xi:n|α, β, γ)
+

1

n

n∑
i=1

(2i− 1)

[
∆1(xn+1−i:n|α, β, γ)

1− F (xn+1−i:n|α, β, γ)

]
= 0

−2
n∑
i=1

∆2(xi:n|α, β, γ)

F (xi:n|λ, θ)
+

1

n

n∑
i=1

(2i− 1)

[
∆2(xn+1−i:n|α, β, γ)

1− F (xn+1−i:n|α, β, γ)

]
= 0

−2

n∑
i=1

∆3(xi:n|α, β, γ)

F (xi:n|α, β, γ)
+

1

n

n∑
i=1

(2i− 1)

[
∆3(xn+1−i:n|α, β, γ)

1− F (xn+1−i:n|α, β, γ)

]
= 0

(43)

where ∆1(x.|α, β, γ) and ∆2(x.|α, β, γ) is as defined in (32) respectively. The

estimates given in (26), (31), (34), (36), (38), (40) and (42) are obtained

using optim() function in R with the Newton-Raphson iterative algorithm.

5 Application

In this section, we apply the proposed distribution to two real life data sets in

order to determine its usefulness and fitness for use.

5.1 Data set on tensile strength of Carbon fibres

The following represent the tensile strength, measured in GPa, of 69 carbon fibers

tested under tension at gauge lengths of 20mm studied by Shanker et al. [28].

We demonstrate that the proposed SHW distribution is superior by comparing

its model performance and fitness with those of the Weibull distribution, Gamma
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Table 1: Tensile strength, measured in GPa, of 69 carbon fibers tested under

tension at gauge lengths of 20mm

1.312 1.314 1.479 1.552 1.7 1.803 1.861 1.865 1.944 1.958 1.966 1.997 2.006

2.021 2.027 2.055 2.063 2.098 2.14 2.179 2.224 2.24 2.253 2.27 2.272 2.274

2.301 2.301 2.359 2.382 2.382 2.426 2.434 2.435 2.478 2.49 2.511 2.514 2.535

2.554 2.566 2.57 2.586 2.629 2.633 2.642 2.648 2.684 2.697 2.726 2.77 2.773

2.8 2.809 2.818 2.821 2.848 2.88 2.954 3.012 3.067 3.084 3.09 3.096 3.128

3.233 3.433 3.585 3.858

Distribution, Lindley Distribution (LD), Exponential Distribution (ED), Pareto

(P) distribution, Lindley-Lomax (LL) distribution and Lindley-Pareto (LP)

distribution using data on the tensile strength, measured in GPa, of 69 carbon

fibers tested under tension at gauge lengths of 20mm as shown in Table 2.

From the analytical measures of fitness, the model with the smaller values

of log-likelihood (LL), the Akaike information criterion (AIC), the Bayesian

information criterion (BIC), and KolmogorovâSmirnov (K-S) statistics, is best

among others. See Uzoma et al. [29] for relevant modification on model

performance criteria using Bayesian Information Criterion (BIC). From Table 2,

the SHW distribution has a better fit to the data on the tensile strength, measured

in GPa, of 69 carbon fibers tested under tension at gauge lengths of 20mm since

its probability value is the largest among other probabilities that are greater than

0.05. Again, SHW distribution has the least values of the LL, AIC and BIC

and hence performance better than the fitted distributions. From Table 3, the

weighted least squares estimation (WLSE) gives the best estimates of the SHW

parameters since the standard errors of the parameters are minimum. Therefore,

the WLSE is the best non-Bayesian approach for estimating the parameters of

the proposed distribution.
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Table 2: The Analytical Measures of Model performance and MLE estimates for

the fitted distributions using data on the tensile strength, measured in GPa, of

69 carbon fibers tested under tension at gauge lengths of 20mm

Distr. Parameter Estimate Std Error LL AIC BIC K-S P-Value

SHW

α 0.1723 0.1710

-50.4328 106.8656 113.5679 0.0510 0.9899β 3.3162 0.7361

γ 0.9283 0.2947

Weibull
shape 5.2694 0.4687

-51.7166 107.4331 111.9013 0.6632 0.902
scale 2.6583 0.0642

Gamma
shape 22.8128 3.8558

-50.9856 105.9712 110.4394 0.0567 0.9703
rate 9.2911 1.5878

LD scale 0.6536 0.0579 -119.311 240.622 242.8561 0.4004 1.688e-10

ED scale 0.4073 0.0409 -130.9789 263.9578 266.1919 0.4477 3.916e-13

P
a 123.0462 168.432

-131.247 266.494 270.9622 0.4473 4.124e-13
t 301.5539 413.904

LL

a 69.2062 30.9224

-131.4559 268.9118 275.6141 0.4461 4.903e-13b 0.0059 0.0026

t -0.0026 0.0478

LP

a 0.4543 0.07724

-50.5038 107.0076 113.7099 0.0513 0.9892k 3.6202 0.3196

t 0.0037 0.0007

5.2 Data on Failure times of mechanical components

The data are extracted from Murthy et al. [30] and studied by Mathew and

Chesneau [31]. They represent the failure times of mechanical components.

30.94 18.51 16.62 51.56 22.85 22.38 19.08 49.56 17.12 10.67 25.43 10.24

27.47 14.70 14.10 29.93 27.98 36.02 19.40 14.97 22.57 12.26 18.14 18.84

We demonstrate that the proposed SHW distribution is superior by comparing

its model performance and fitness with those of the Weibull distribution,

Gamma Distribution, Log-Normal Distribution, Exponential Distribution (ED)

and Lindley-Pareto (LP) distribution using data on the failure times of mechanical
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Table 3: Classical Estimates for the SHW Distribution using data on the tensile

strength, measured in GPa, of 69 carbon fibers tested under tension at gauge

lengths of 20mm

Parameters

Method α β γ

MLE
Estimate 0.1723 3.3162 0.9283

Std. Error 0.1710 0.7362 0.2947

MPSE
Estimate 0.1362 3.3385 0.8225

Std. Error 0.1511 0.7753 0.3396

LSE
Estimate 0.0891 3.9121 0.7684

Std. Error 1.0580 7.9546 3.3213

WLSE
Estimate 0.0735 4.0013 0.7072

Std. Error 0.0348 0.3124 0.1299

CVME
Estimate 0.1114 3.8198 0.8436

Std. Error 1.6594 10.2348 4.1879

ADE
Estimate 0.1057 3.7614 0.8089

Std. Error 0.3659 2.3750 0.9829

RTADE
Estimate 0.0093 5.0828 0.1196

Std. Error 0.01251 0.9726 0.4763

components Table 4. From Table 4, the SHW distribution has a better fit

to the data on data on the failure times of mechanical components since its

probability value is the largest among other probabilities that are greater than

0.05. Again, SHW distribution has the least values of the LL, AIC and BIC and

hence performance better than the fitted distributions. The fitted distributions in
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 Box plot of the data

Figure 5: The estimated pdf, cdf, Kaplan-Meier and Box plots of the SHW and

other fitted distributions using tensile strength, measured in GPa, of 69 carbon

fibers tested under tension at gauge lengths of 20mm.

Figure 6 displays the density, CDF, empirical reliability, Kaplan-Meier and Box

plots of the data on the failure times of mechanical components. This data set

again shows that SHW is best fit compared to the parent distribution-Weibull and

the popular lifetime distributions namely Weibull, Gamma and Lognormal among
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Table 4: The Analytical Measures of Model performance and MLE estimates for

the fitted distributions using data on the failure times of mechanical components

Distr. Parameters Estimate Std. Error LL AIC BIC K-S P-vale

SHW

α 0.0472 0.0388

-84.8887 175.7773 179.3115 0.09598 0.9646β 1.1717 0.2616

γ 10.0957 0.4669

Weibull
shape 2.3067 0.3375

-88.891 181.782 184.1381 0.1433 0.656
scale 26.0177 2.4471

Gamma
shape 5.6915 1.5970

-86.9446 177.8892 180.2454 0.1404 0.6805
rate 0.2478 0.0727

Log-Normal
meanlog 3.0440 0.0849

-86.0300 176.06 178.4161 0.1167 0.8621
sdlog 0.4158 0.0601

ED θ 0.0435 0.0089 -99.2232 200.4463 201.6244 0.3597 0.0028

LP

a 0.0491 0.0416

-87.8186 181.6373 185.1714 0.1418 0.6683k 1.6310 0.2172

t 0.0001 0

others (see Table 4 for the estimates, standard error (Std. Err.), performance

criteria and the p-value.
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Figure 6: The estimated pdf, cdf, Kaplan-Meier and Box plots of the SHW

and other fitted distributions using data on the failure times of mechanical

components.

6 Conclusion

The Shifted Weibull distribution studied in this paper was for the purpose of

taking into account the lower bound of the random variate distributed according
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to the proposed distribution. Some of the important properties are derived

and examined, including moments and their measures, the moment generating

function, the characteristic function, the hazard rate, Rény entropy, order

statistics, and stochastic ordering. To estimate and study the parameters, seven

methods are considered and comparisons are made. The techniques looked at

include maximum likelihood estimation, maximum product spacing, least squares,

weighted least squares, Cramer-von-Mises and the right-tailed Anderson-Darling.

The application to data on the failure times of mechanical components reveals

that demonstrates that the SHW distribution offered a strong fit to the data sets.

The SHW distribution outperformed the competition when put up against other

distributions based on the LL, AIC, BIC, KS, and probability values. Among

the classical estimation methods, the weighted least squares estimation was the

best using the data on the tensile strength, measured in GPa, of 69 carbon fibers

tested under tension at gauge lengths of 20mm.
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