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Abstract 

In this paper, modified extended tanh method is used to construct more general exact 

solutions of a (2+1)-dimensional nonlinear Schrödinger equation. With the aid of Maple 

and Matlab software, we obtain exact explicit kink wave solutions, peakon wave 

solutions, periodic wave solutions and so on and their images. 

1. Introduction 

It is well known that Schrödinger equation is one of the most basic equations of 

quantum mechanics. It reflects the state of micro particle changing with time. As it is a 

powerful tool for solving non relativistic problems in atomic physics, it was widely used 

in the fields of atomic, molecular, solid state physics, nuclear physics, chemistry and so 

on. Recently, searching and constructing exact solutions of nonlinear partial differential 
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(NLPD) equation is very meaningful for it can describe the problems of mechanics, 

control process, ecological and economic system, chemical recycling system and 

epidemiological. In the past several decades, much efforts have been on this aspect and 

many useful methods have been proposed such as inverse scattering method, Jacobi 

elliptic function method, F-expansion method, Darboux transform, the sine-cosine 

method and the tanh method. The tanh method is widely used as it can find exact as well 

as approximate solutions in a systematic way. Subsequently, Fan has proposed an 

extended tanh method and obtained the travelling wave solutions that cannot be obtained 

by the tanh method. Based on this approach, we employed the modified extended tanh 

method to construct a series of exact travelling wave solutions of a (2+1)-dimensional 

nonlinear Schrödinger (NLS) equation as  

 .02 =+β+α+ uuruuiu yyxxt   (1) 

2. The tanh Method 

Here we review the modified extended tanh method. 

The modified extended tanh method is developed by Malfliet in [10, 11], and used in 

[12-14] among many others. Since all derivatives of a tanh can be represented by tanh 

itself, consider the general NLPDE say in two variables 

( ) .0...,,,,,, =tutuxuuuuH xtxxt  

Now we consider its travelling ( ) ( ),, ξ= utxu  where ctx −=ξ  or ctx +=ξ  and 

the equation becomes an ordinary differential equation. We apply the following series 

expansion: 

( ) ∑ ∑
= =

− φ+=φ′φ+φ=ξ
N

i

N

i

i
i

i
i bbau

0 1

2 ,,  

where b is a parameter to be determined, ( )ξφ=φ  and .
ξ
φ=φ′

d

d
 

To determine the parameter N, we usually balance the linear terms of highest-order 

in the resulting equation with the highest-order nonlinear terms. Then we can get all 

coefficients of different powers of ϕ and determine cbba ii ,,,  by make them equals to 

zeros. 
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The Riccati equation has the following general solutions: 

(a) If ,0<b  then  

( ),tanh ξ−−−=φ bb  

(b) If ,0>b  then 

( ),tan ξ=φ bb  

(c) If ,0=b  then 

.
1

ξ
−=φ  

3. Exact Travelling Wave Solutions of (1) 

We consider the travelling wave solution ( ) ( ),,, ξ= utyxu  ctkyx −+=ξ  for (1), 

and also 

 ( ) ( ) ( ).ξ+ξ=ξ iQPu   (2) 

According to (1) and (2), we can get 

 ( ) ( ) ( ) ( ) ( ) .022 =++++β++α++ iQPQPriQPiQPiQPi yyyyxxxxtt  (3) 

From (3) we can obtain two equations 

 ,023 =++β+α+− PrQrPPPQ yyxxt   (4a) 

 .032 =++β+α+ rQQrPQQP yyxxt   (4b) 

For ( ) ( )ξ= utyxu ,,  and ,ctkyx −+=ξ  we can transmute (4) into ordinary 

differential equations 

 ( ) ,0
232 =++′′β+α+′ PrQrPPkQc   (5a) 

 ( ) .0
322 =++′′β+α+′− rQQrPQkPc   (5b) 

The solution can be expressed as the following form 
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 ( ) ∑ ∑
= =

−φ+φ=ξ
N

i

N

i

i
i

i
i baP

0 1

,   (6a) 

 ( ) ∑ ∑
= =

−φ+φ=ξ
1

0

1

1

.

N

i

N

i

i
i

i
i dcQ   (6b) 

Balancing the linear term of highest order with the nonlinear term in both equations, we 

find 

,31242 NNNN =+=+−  

.312421 NNNN =+=+−  

Thus, ,11 == NN  and 

 ( ) ,1
110

−φ+φ+=ξ baaP   (7a) 

 ( ) .
1

110
−φ+φ+=ξ dccQ   (7b) 

With ,
2φ+=φ′ b  we get 

 ( ) ( ) ,2
1

2
111

−φ−φ+−=ξ′ bbabbaP   (8a) 

 ( ) ,2222
1

1
3

1
2

1
3

1
−− φ+φ+φ+φ=ξ′′ bbbbbaaP   (8b) 

 ( ) ( ) ,
2

1
2

111
−φ−φ+−=ξ′ bdcdbcQ   (8c) 

 ( ) .2222
1

1
3

1
2

1
3

1
−− φ+φ+φ+φ=ξ′′ bddbbccQ   (8d) 

Substituting (7) and (8) into two ordinary differential equations (5), and collecting 

the coefficients of ϕ gets two system of algebraic equations for ,,,,,, 110110 dccbaa   

,,, kcb  

( ) ( ) 110110011
2
011

0
222: daracbracbaarbbac ++++−−φ  

( ) ,042 11011
2
00 =+++ dcrcdccrc  

( ) ( ) 1
2
110011

2
011

2
222: draaarcbaarcbck ++++β+αφ  

( ) ,022 2
1111

2
011

2
0 =++++ crddccrccrc  
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,032:
2
10110

2
101

2 =+++−φ crccaraarcca  

( ) ,02:
3
1

2
11

2
1

3 =++β+αφ rcarckc  

( ) ( )11
2
01

2
11100

2
1

1
222: baardbrcbcrakbd ++++β+αφ−  

( ) ,022 11
2
01

2
111

2
0 =++++ dccrddrcdrc  

,032:
2
10110

2
101

2 =+++φ−
drcdbrabrcbcb  

( ) 02:
3
1

2
11

22
1

3 =++β+αφ−
rdbrdkbd  

and 

( ) ( ) ( )11
2
0011011

2
0011

0
242: dccrabarabaaradbcc +++++−φ  

,022 110101 =++ bcrcdcra  

( ) ( ) 1001
2
111

2
011

2
0

2
1 2222: ccrabrabaaraarakba +++++β+αφ  

( ) ,02
2
1111

2
01 =+++ crbdccra  

,022: 2
10101

2
100

2
11

2 =++++φ craccraaraaracc  

( ) ,02:
2
11

3
1

2
1

3 =++β+αφ craraka  

( ) ( ) 2
1111

2
01

2
111

2
0

2
1

1
222: drabaarbbrabrakbb +++++β+αφ−  

( ) ,022 11
2
01100 =+++ dccrbdcra  

,022: 110
2
10

2
10

2
101

2 =++++−φ−
dbrcdrabrabracbd  

( ) .02:
2
11

3
1

22
1

3 =++β+αφ−
drbrbkbb  

With the aid of Maple, we obtain kcbdccbaa ,,,,,,,, 110110  as follows: 

Case 1. 

,
22 2

1
2
1

2

100

−










 +β+α−−=
r

rck
cca   ,

22 2

1
2
1

2

1 








 +β+α−=
r

rck
a  
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,
22

4

2

1
2
1

22
0

1

−










 +β+α−−=
r

rckc
b      ,

224

1

2
1

2

2
0

rck

rc
b

+β+α
−=  

( ) ,
22

2
2

1
2
1

2
2

0

−










 +β+α−β+α−=
r

rck
kcc    ,00 cc =    ,11 cc =   

,,
224

1

2
1

2
1

2
0

1 kk
rck

rcc
d =

+β+α
=  

where 10 ,,,,, cckr αβ  are arbitrary constants. 

Case 2. 

,
22 4

1

2
1

2
1

2

10 










+
β+α−−=
rbrd

k
da   ,

22
,,0

4

1

2
1

2
1

2

111

−












+
β+α−===
rbrd

k
bbba  

( ) ,
22

,
22 4

1

2
1

2
1

2

10

4

3

2
1

2
1

2
2
1

2
1 











+
β+α−=











+
β+α−+−=

rbrd

k
bc

rbrd

k
bdrc  

,,,0 111 kkddc ===  

where 11,,,,, dbkr αβ  are arbitrary constants. 

Case 3. 

,0,0,
22

11

4

1
22

1
2
1

0 ==











 β+α−= ba
r

kdd
a  

,
22 2

1
22

1
2
12

1

−










 β+α−=
r

kdd
db    ,

22 4

3
22

1
2
1

1









 β+α−=
r

kdd

d

r
c   

,,,0,0 1110 kkddcc ====  

where 1,,,, dkr αβ  are arbitrary constants. 
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Case 4. 

,
2

1
,0,0,

2

2
0

1100
k

ra
bbaaa

β+α
−====     

,
22 2

1
2

0 








 β+α−−=
r

k
rac    ,,0,

22
,0 1

2

1
2

10 kkd
r

k
cc ==









 β+α−==  

where 0,,,, akr αβ  are arbitrary constants. 

Case 5. 

,0,0, 1100 === baaa    ,
8

1

2

2
0

k

ra
b

β+α
−=  

,
22 2

1
2

0 








 β+α−−=
r

k
rac    ,

24 2

1
2

0 








 β+−−=
r

k
rac    ,00 =c  

,,
22

4
,

22 2

1
22

0
1

2

1
2

1 kk
r

ka
d

r

k
c =











 β+α−−=










 β+α−=
−

 

where 0,,,, akr αβ  are arbitrary constants. 

Case 6. 

,
2

1
,0,

22
,0

2

2
0

1

2

1
2

10
k

rc
bb

r

k
aa

β+α
−==











 β+α−==  

,,0,0,,
22

1100

2

1
2

0 kkdccc
r

k
rcc ====









 β+α−=  

where 0,,,, ckr αβ  are arbitrary constants. 

Case 7. 

,
2

22
,

2

22 2

1
2
1

2

1

2

1
2
1

2

100 








 +β+α−=








 +β+α−−=
−

rck
a

rck
cca  
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,01 =b    ,
22 2

1
2

2
0

rck

rc
b

+β+α
−=    ( ) ,

2

22
2

2

1
2
1

2

0
2

−










 +β+α−β+α−= rck
ckc  

,,0,, 11100 kkdcccc ====  

where 10 ,,,,, cckr αβ  are arbitrary constants. 

Case 8. 

,
22

8

1
,

22
,0

2

1
2

2

2
0

1

2

1
2

10 








 β+α−
β+α

=








 β+α−==
r

k

k

rc
b

r

k
aa  

,
8

1

2

2
0

k

rc
b

β+α
−=    ,

22 2

1
2

0 










 β+α−=
r

k
rcc  

,0,0,0, 1100 ==== kdccc  

where 0,,,, ckr αβ  are arbitrary constants. 

Case 9. 

,
2

1
,

22
,0,0

2

2
0

2

2
0110

k

rc
b

k

r
cbaa

β+α
−=

β+α
−===  

,0,0,,,

22

1100

2

0 ====

β+α
−

−= dccckk

k

r

rc
c  

where 0,,,, ckr αβ  are arbitrary constants. 

If ,0>b  we get 

 ( ) ( ) ( ( ) ( ) ),,,,,,,,,
1

110
1

110
−− +++++= tyxvdtyxvccityxvbtyxvaau  (9a) 

where ( ) ( ( )).tan,, ctkyxbbtyxv −+=  
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If ,0=b  we get 

 ( ) ( ) ( ( ) ( ) ),,,,,,,,,
1

110
1

110
−− +++++= tyxvdtyxvccityxvbtyxvaau    (9b) 

where ( ) .
1

,,
ctkyx

tyxv
−+

=  

If ,0<b  we get 

 ( ) ( ) ( ( ) ( ) ),,,,,,,,,
1

110
1

110
−− +++++= tyxvdtyxvccityxvbtyxvaau   (9c) 

where ( ) ( ( )).tanh,, ctkyxbbtyxv −+−−−=  

Substituting all those situations into (9) respectively, we can get all solutions of the 

derivative nonlinear Schrödinger equation. 

4. Image Simulation 

In order to grasp these exact travelling solutions, we choose several exact solutions 

and use the Matlab software to simulate images. In the process of image simulation, the 

figures and value of parameters we selected show as follows: 

  

Figure 1. 3-dimensional wave of Case 1. Figure 2. 3-dimensional wave of Case 2. 

In Figure 1, we take ,1−=r  ,11=β  ,1.0=k  ,25.00 −=c  ,1.01 =c  ,2.0−=α  

.1.0=t  In Figure 2, we take .1.0,1,1,1,1,3,6 11 =−==α==−=β−= tbdkr  
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Figure 3. 3-dimensional wave of Case 3. Figure 4. 3-dimensional wave of Case 3. 

In Figure 3, we take .1.0,2.0,2,1.0,3.0,1.0 1 ==α−===β= tdkr  In Figure 

4, we take .1.0,2,4,6,1.0,2,6 10 ==−=α===β−= tdckr  

  

Figure 5. 3-dimensional wave of Case 4. Figure 6. 3-dimensional wave of Case 5. 

In Figure 5, we take .1.0,7.0,2,3,3,1 0 =−=α===β−= takr  In Figure 6, 

we take .1.0,1,25.0,1.0,3.0,1 0 =−=α−==−=β−= takr  



Exact Solutions for (2+1)-dimensional Nonlinear Schrödinger Equation … 

Earthline J. Math. Sci. Vol. 2 No. 1 (2019), 15-27 

25 

  

Figure 7. 3-dimensional wave of Case 6. Figure 8. 3-dimensional wave of Case 7. 

In Figure 7, we take .1.0,2,5.0,5.2,3,6 0 =−=α−===β−= tckr  In Figure 8, 

we take .1.0,2,2,6,9.2,3,1 10 ==−=α===β−= tcckr  

  

Figure 9. 3-dimensional wave of Case 8. Figure 10. 3-dimensional wave of Case 9. 

In Figure 9, we take .1.0,2.3,5.2,6.1,2,2 0 ==α===β−= tckr  In Figure 

10, we take .1.0,1,1,5.2,1,1,1.0 10 ==−=α===β−= tcckr  
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Figure 11. 3-dimensional wave of Case 9. Figure 12. 3-dimensional wave of Case 9. 

In Figure 11, we take .1.0,1,1,6,1,6 0 =−=α=−==β−= tckr  In Figure 12, 

we take .01.0,1,1,6,1,6 0 =−=α=−==β= tckr  

5. Conclusion 

In this paper we studied the nonlinear Schrödinger equation by finding its exact 

travelling wave solutions through the modified extended tanh methods. With the aid of 

waveform graphs of the solutions, we can obtain the related properties of the equation. 

However, we can also use the method of dynamical systems to obtain the bounded 

solutions. 
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