Molecular and crystal engineering of a semicarbazide–ketone condensate: A multitechnique characterization

  • Fatou Dieng Laboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal
  • Papa Aly Gueye Laboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal
  • Mouhamadou Birame Diop Laboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal
  • Adrienne Ndiolene Laboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal
  • Mouhamadou Sembene Boye Département de Physique Chimie, Faculté des Sciences et Technologies de l’éducation et de la formation, Boulevard Habib Bourguiba, Université Cheikh Anta Diop, 5036 Fann-Dakar, Sénégal
  • Shova Sergiu Inorganic Polymers Department, “Petru Poni” Institute of Macromolecular Chemistry, Alea Gr. Ghica Voda 41A, Iasi 700487, Romania
  • Aminata Diassé-Sarr Laboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal
Keywords: single crystal X-ray, semicarbazide condensation, spectroscopic characterization, Hirshfeld surface analysis, supramolecular assembly

Abstract

The studied organic compound, namely (2Z)-2-(2-chloro-1-phenylethylidene)hydrazine-1-carboxamide was synthesized via a condensation reaction between semicarbazide hydrochloride and α-chloroacetophenone, affording a hydrazone–carboxamide derivative in good yield. Its structure was elucidated using single crystal X-ray crystallography, ATR-FTIR, 1H NMR, 13CNMR, DEPT 135°, and Hirshfeld surface analysis. The compound [C6H5-C(CH2Cl)N=NH-C(O)NH2] (1), crystallizes in the monoclinic space group P21/C with Z = 4, a = 10.6213(8) Å, b = 7.2518(5) Å, c = 13.6791(9) Å, β = 101.018(7)° and V = 1034.19(13) Å3. ATR-FTIR and NMR data confirmed the presence of a monosubstituted aromatic ring, a chloromethyl side chain, and a conjugated hydrazone–amide moiety. Single-crystal X-ray analysis revealed typical metrics consistent with a C=N double bond and a urea-like C=O(–NH2) fragment. In the crystal, molecules are linked by directional N–H···O and N–H···N hydrogen bonding patterns, giving rise to centrosymmetric  dimers, extended  rings, and larger  macrocyclic assemblies, generating a two-dimensional supramolecular network parallel to the (100) plane. Hirshfeld surface analysis supported the dominance of hydrogen bonding in the packing arrangement and confirmed the absence of significant π···π stacking interactions. These results achieve the critical role of hydrogen bonding in directing the crystal architecture and stabilizing the structure.

References

Tapera, M., Kekeçmuhammed, H., Saripinar, E., Doğan, M., Tüzün, B., Koçyiğit, Ü. M., & Çetin, F. N. (2023). Molecular hybrids integrated with imidazole and hydrazone structural motifs: Design, synthesis, biological evaluation, and molecular docking studies. Journal of Molecular Liquids, 391(A), 123242. https://doi.org/10.1016/j.molliq.2023.123242

Jabeen, M. (2002). A comprehensive review on analytical applications of hydrazone derivatives. Journal of the Turkish Chemical Society, Section A: Chemistry, 9(3), 663–698. https://doi.org/10.18596/jotcsa.1020357

Carrasco, F., Hernández, W., Chupayo, O., Pumachagua, R., Spodine, E., Mosquera, J., Castro, O. N., Rodilla, J. M., Álvarez, C. M., & Dávalos, J. Z. (2024). Novel derivatives of phenylisoxazole-3/5-carbaldehyde semicarbazone: Synthesis, characterization, and computational studies. Journal of Chemistry, 2024, Article ID 8891272. https://doi.org/10.1155/2024/8891272

Czyżewska, I., Mazur, L., & Popiołek, Ł. (2024). Transition metal complexes of hydrazones as potential antimicrobial and anticancer agents: A short review. Chemical Biology and Drug Design, 104(1), e14590. https://doi.org/10.1111/cbdd.14590

da Cunha, P. S. T., Gini, A. L. R., Chin, C. M., dos Santos, J. L., & Scarim, C. B. (2025). Recent progress in thiazole, thiosemicarbazone, and semicarbazone derivatives as antiparasitic agents against Trypanosomatids and Plasmodium spp. Molecules, 30(8), 1788. https://doi.org/10.3390/molecules30081788

Çapan, İ., Hawash, M., Qaoud, M. T., Gülüm, L., Tunoglu, E. N. Y., Çifci, K. U., Çevrimli, B. S., Sert, Y., Servi, S., Koca, İ., & Tutar, Y. (2024). Synthesis of novel carbazole hydrazine-carbothioamide scaffold as potent antioxidant, anticancer and antimicrobial agents. BMC Chemistry, 18, 102. https://doi.org/10.1186/s13065-024-01207-1

Aljuhani, A. S., Nafie, M. S., Albujuq, N. R., Alsehli, M., Bardaweel, S. K., Darwish, K. M., Alraqa, S. Y., Aouad, M. R., & Rezki, N. (2025). Discovery of new benzothiazole 1,2,3-triazole hybrid based hydrazone/thiosemicarbazone derivatives as potent EGFR inhibitors with cytotoxicity against cancer. RSC Advances, 15(5), 3570–3591. https://doi.org/10.1039/D4RA07540D

Kwon, O.-P., Jazbinšek, M., Yun, H., Seo, J.-I., Kim, E.-M., Lee, Y.-S., & Günter, P. (2008). Pyrrole based hydrazone organic nonlinear optical crystals and their polymorphs. Crystal Growth & Design, 8(11), 4021–4025. https://doi.org/10.1021/cg800218u

Stegbauer, L., Schwinghammer, K., & Lotsch, B. V. (2014). A hydrazone based covalent organic framework for photocatalytic hydrogen production. Chemical Science, 5(7), 2789–2793. https://doi.org/10.1039/C4SC00016A

Sakr, M. A. S., Sherbiny, F. F., & El Etrawy, A. A. S. (2022). Hydrazone based materials: DFT, NBO, MESP analysis and solar cell applications. Journal of Fluorescence, 32(5), 1857–1871. https://doi.org/10.1007/s10895-022-03000-6

CrysAlisPro (Version 1.171.44.88a). (2025). Rigaku Oxford Diffraction.

Sheldrick, G. M. (2015). SHELXT: Integrated space-group and crystal structure determination. Acta Crystallographica Section A: Foundations and Advances, 71(1), 3–8. https://doi.org/10.1107/S2053273314026370

Sheldrick, G. M. (2015). Crystal structure refinement with SHELXL. Acta Crystallographica Section C: Structural Chemistry, 71(1), 3–8. https://doi.org/10.1107/S2053229614024218

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., & Puschmann, H. (2009). OLEX2: A complete structure solution, refinement and analysis software. Journal of Applied Crystallography, 42(2), 339–341. https://doi.org/10.1107/S0021889808042726

Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D., & Spackman, M. A. (2021). CrystalExplorer: A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. Journal of Applied Crystallography, 54(3), 1006–1011. https://doi.org/10.1107/S1600576721002910

Wahbeh, J., & Milkowski, S. (2019). The use of hydrazones for biomedical applications. SLAS Technology, 24(2), 161–168. https://doi.org/10.1177/2472630318822713

Popiołek, Ł. (2017). Hydrazide–hydrazones as potential antimicrobial agents: Overview of the literature since 2010. Medicinal Chemistry Research, 26(2), 287–301. https://doi.org/10.1007/s00044-016-1756-y

Mathew, B., Suresh, J., Ahsan, M. J., Mathew, G. E., Usman, D., Subramanyan, P. N. S., Safna, K. F., & Maddela, S. (2015). Hydrazones as a privileged structural linker in antitubercular agents: A review. Infectious Disorders – Drug Targets, 15(2), 76–88. https://doi.org/10.2174/1871526515666150724104411

Breitmaier, E., & Voelter, W. (1987). Carbon-13 NMR spectroscopy: High-resolution methods and applications in organic chemistry and biochemistry (3rd ed.). VCH Verlagsgesellschaft. https://doi.org/10.1002/jps.2600760918

Badertscher, M., Bühlmann, P., & Pretsch, E. (2009). Structure determination of organic compounds (4th ed.). Springer. https://doi.org/10.1007/978-3-540-93810-1

Silverstein, R. M., Webster, F. X., Kiemle, D., & Bryce, D. L. (2014). Spectrometric identification of organic compounds (8th ed.). Wiley.

Ali, A., Khalid, M., Abdul Rehman, M., Anwar, F., Zain-Ul-Aabidin, H., Akhtar, M. N., Khan, M. U., Braga, A. A. C., Assiri, M. A., & Imran, M. (2020). An experimental and computational exploration on the electronic, spectroscopic, and reactivity properties of novel halo-functionalized hydrazones. ACS Omega, 5(30), 18907–18918. https://doi.org/10.1021/acsomega.0c02128

Exner, O., & Böhm, S. (2002). Bond angles and bond lengths in monosubstituted benzene and ethene derivatives: A comparison of computational and crystallographic results. Acta Crystallographica Section B: Structural Science, 58(5), 877–883. https://doi.org/10.1107/S0108768102010510

Esselman, B. J., Zdanovskaia, M. A., Owen, A. N., Stanton, J. F., Woods, R. C., & McMahon, R. J. (2023). Precise equilibrium structure of benzene. Journal of the American Chemical Society, 145(40), 21785–21797. https://doi.org/10.1021/jacs.3c03109

Pisk, J., Đilović, I., Hrenar, T., Cvijanović, D., Pavlović, G., & Vrdoljak, V. (2020). Effective methods for the synthesis of hydrazones, quinazolines, and Schiff bases: Reaction monitoring using a chemometric approach. RSC Advances, 10(63), 38566–38577. https://doi.org/10.1039/D0RA06845D

Vennila, S., Deepa, K., Nagaraja, K. S., Lakshmi, L., Selvaraj, S., & Karnan, C. (2024). Synthesis, structural, spectral, anticancer activity, and density functional theory investigations of 2-[hydrazinylidene(phenyl)methyl]pyridine. Journal of Molecular Structure, 1316, 138832. https://doi.org/10.1016/j.molstruc.2024.138832

Bashir, M., Dar, A. A., & Yousuf, I. (2023). Syntheses, structural characterization, and cytotoxicity assessment of novel Mn(II) and Zn(II) complexes of aroyl-hydrazone Schiff base ligand. ACS Omega, 8(3), 3026–3042. https://doi.org/10.1021/acsomega.2c05927

Zhang, Y., Sun, Y., Wang, T., Liu, J., Spingler, B., & Duttwyler, S. (2018). Synthesis and structural characterization of amidine, amide, urea and isocyanate derivatives of the amino-closo-dodecaborate anion [B12H11NH3]−. Molecules, 23(12), 3137. https://doi.org/10.3390/molecules23123137

Saouli, S., Selatnia, I., Zouchoune, B., Sid, A., Zendaoui, S. M., Bensouici, C., & Bendeif, E. (2020). Synthesis, spectroscopic characterization, crystal structure, DFT studies and biological activities of a new hydrazone derivative: 1-(2,5-bis((E)-4-isopropylbenzylidene)cyclopentylidene)-2-(2,4-dinitrophenyl)hydrazine. Journal of Molecular Structure, 1213, 128203. https://doi.org/10.1016/j.molstruc.2020.128203

Belskaya, N. P., Dehaen, W., & Bakuleva, V. A. (2010). Synthesis and properties of hydrazones bearing carboxamide, thioamide and amidine functions. ARKIVOC, 2010(i), 275–332.

Kurbanova, M., Ashfaq, M., Tahir, M. N., Maharramov, A., Dege, N., Ramazanzade, N., & Cinar, E. B. (2023). Synthesis, crystal structure, supramolecular assembly inspection by Hirshfeld surface analysis and computational exploration of 4-phenyl-6-(p-tolyl)pyrimidin-2(1H)-one (PPTP). Journal of Structural Chemistry, 64(3), 437–449. https://doi.org/10.1134/S0022476623030095

Parsaee, Z., Bahaderani, E. J., & Afandak, A. (2018). Sonochemical synthesis, in vitro evaluation and DFT study of novel phenothiazine base Schiff bases and their nano copper complexes as the precursors for new shaped CuO-NPs. Ultrasonics Sonochemistry, 40(A), 629–643. https://doi.org/10.1016/j.ultsonch.2017.08.010

Ahmad, S., Khan, M., Rehman, N. U., Ikram, M., Rehman, S., Ali, M., Uddin, J., Khan, A., Alam, A., & Al-Harrasi, A. (2022). Design, synthesis, crystal structure, in vitro and in silico evaluation of new N′-benzylidene-4-tert-butylbenzohydrazide derivatives as potent urease inhibitors. Molecules, 27(20), 6906. https://doi.org/10.3390/molecules27206906

Maluleka, M. M., & Mphahlele, M. J. (2024). Synthesis, crystal structure, cytotoxicity (MCF-7 and HeLa) and free radical scavenging activity of the hydrazones derived from 2-methylsulfonyl-5-nitrobenzaldehyde. Results in Chemistry, 12, 101896. https://doi.org/10.1016/j.rechem.2024.101896

Muthuraja, P., Joselin Beaula, T., Shanmugavadivu, T., Bena Jothy, V., & Dhandapani, M. (2017). Hydrogen bonded R_2^2 (8) graph set in inducing charge transfer mechanism in guanidinium-3,5-dinitrobenzoate: A combined experimental, theoretical and Hirshfeld surface study. Journal of Molecular Structure, 1137, 649–662. https://doi.org/10.1016/j.molstruc.2017.02.067

Published
2025-09-11
How to Cite
Dieng, F., Gueye, P. A., Diop, M. B., Ndiolene, A., Boye, M. S., Sergiu, S., & Diassé-Sarr, A. (2025). Molecular and crystal engineering of a semicarbazide–ketone condensate: A multitechnique characterization . Earthline Journal of Chemical Sciences, 12(4), 379-396. https://doi.org/10.34198/ejcs.12425.379396
Section
Articles

Most read articles by the same author(s)