Antioxidants and Their Role in Preventing Diseases: A Review

  • Ekhlas Abdallah Hassan Department of Chemistry, College of Science, University of Diyala, Diyala, Iraq
  • Wafaa Sh. Al-Zuhairi Department of Chemistry, College of Science, University of Diyala, Diyala, Iraq
  • Wijdan Amer Ibrahim Department of Chemistry, College of Science, University of Diyala, Diyala, Iraq
Keywords: antioxidant, vitamin C, vitamin E, vitamin A, enzymes

Abstract

Antioxidants are natural materials that may delay or stop some kinds of hurt in cells. Many foodstuffs have antioxidants, such as fruits and vegetables. Even though the reactions of oxidation are critical for life, but can also be harmful; vegetation and faunae preserve multifaceted systems of various types of antioxidants, for example, vitamin C, vitamin E, and vitamin A besides enzymes like superoxide dismutase, catalase and many peroxides. The most important antioxidant source that protected ancient peoples from the harm caused by free radicals was old-style herbal remedies and dietetic diets. In addition, it is broadly utilized in dietetic supplements and have been studied for their potential to prevent diseases such as tumors and coronary heart disease. Although preliminary research suggested that antioxidant supplements could be beneficial to one’s health. Furthermore, clinical trials of antioxidant supplements containing beta-carotene, vitamin A, and vitamin E alone or in various combinations show that supplementation has no effect on the rate or may even increase it. Antioxidants are also used in the food industry as food additives and cosmetics, as well as to prevent rubber and fuel degradation.

References

Boxin, O.U., Dejian, H., Maureen, A.F., & Elizabeth, K.D. (2002). Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: a comparative study. J. Agric. Food Chem., 5, 223-228.

Mark Percival (1998). Antioxidants - A review. Clinical Nutrition Insights., Advance Nutrition Publications, 31, 201-205.

Dembinska-Kiec, A., Mykkanen, O., Kiec-Wilk, B., & Mykkanene H. (2008). Antioxidant phyto-chemicals against type 2 diabetes. British J. Nutri., 99, 109-117. https://doi.org/10.1017/S000711450896579X

Sin, H.P.Y., Liu, D.T.L., & Lam, D.S.C. (2013). Life style modification, nutritional and vitamins supplements for age-related macular degeneration. Acta Ophthalmologica, 91, 6-11. https://doi.org/10.1111/j.1755-3768.2011.02357.x

Cao, G.H., Russell, R.M., Lischner, N., & Prior, R.L. (1998). Serum antioxidant capacity is increased by consumption of strawberries, spinach, red wine or vitamin C in elderly women. J. Nutri., 128, 2383-2390. https://doi.org/10.1093/jn/128.12.2383

Swami, S.B., Thakor, N.J., Haldankar, P.M., & Kalse, S.B. (2012). Jackfruit and its many functional components as related to human health: A Review. Comprehensive Reviews in Food Sci. and Food Safety, 11, 565-576. https://doi.org/10.1111/j.1541-4337.2012.00210.x

Gomes, F.S., Costa, P.A., Campos, M.B.D., Tonon, R.V., Couri, S., & Cabral L.M.C. (2013). Watermelon juice pre-treatment with microfiltration process for obtaining lycopene. International J. of Food Sci. and Technol., 48, 601-608. https://doi.org/10.1111/ijfs.12005

Simon, J.A., Hudes, E.S., & Tice, J.A. (2001). Relation of serum ascorbic acid to mortality among US adults. J. American. Col. Nutrition, 20, 255-263. https://doi.org/10.1080/07315724.2001.10719040

Block, G. (1999). Epidemiological evidence regarding vitamin C and cancer. Am. J. Clinical. Nutrition, 54, 1305-1314. https://doi.org/10.1093/ajcn/54.6.1310s

Hossain, M.A., & Asada, K. (1985). Monodehydroascorbate reductase from cucumber is a flavin adenine dinucleotide enzyme. Journal of Biological Chemistry, 260(24), 12920-6. https://doi.org/10.1016/S0021-9258(17)38813-0

May, J.M., & Harrison, F.E. (2013). Role of vitamin C in the function of the vascular endothelium. Antioxidants & Redox Signaling 19(17), 2068-83. https://doi.org/10.1089/ars.2013.5205

Handan, M.K., Suleyman, M., & Yeter, D. (2007). Vitamin status in yearling rams with growth failure. Turkey. J. Veterinary. Animal. Sci. 31, 407-409.

Bashir, M.R., Guido, M.H., Wim, J.F.V., & Aalt, B. (2004). The extraordinary antioxidant activity of vitamin E phosphate. Bioch. Biophy. Acta, 1683, 16-21. https://doi.org/10.1016/j.bbalip.2004.03.005

Mayes, P.A. (1996). Structure and function of the lipid-soluble vitamins. In R.K. Murray, D.K. Granner, P.A. Mayes, & V.W. Rodwell (Eds.), Herper’s biochemistry (24th ed., pp. 614-24). Connecticut: Appleton and Lange.

Zubair, M. (2017). Effects of dietary vitamin E on male reproductive system. Asian Pacific Journal of Reproduction, 6(4), 145. https://doi.org/10.12980/apjr.6.20170401

Miller, A.P., Coronel, J., & Amengual, J. (2020). The role of β-carotene and vitamin A in atherogenesis: evidences from preclinical and clinical studies. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1865, 158635. https://doi.org/10.1016/j.bbalip.2020.158635

Chahre, M. (1985). Trigger and amplification mechanisms in visual phototransduction. Annual Review of Biophysics and Biophysical Chemistry, 14(1), 331-60. https://doi.org/10.1146/annurev.bb.14.060185.001555

Spom, M.B., & Roberts, A.B. (1983). Role of retinoids in differentiation and carcinogenesis. Cancer Research, 43(7), 3034-40.

Rahi, J.S., Sripathi, S., Gilbert, C.E., & Foster, A. (1995). Childhood blindness due to vitamin A deficiency in India: regional variations. Archives of Disease in Childhood, 72(4), 330-3. https://doi.org/10.1136/adc.72.4.330

Christian, P., West, Jr., K.P., Khatry, S.K., Kimbrough-Pradhan, E., LeClerq, S.C., Katz, J., Shrestha, S.R., Dali, S.M., & Sommer, A. (2000). Night blindness during pregnancy and subsequent mortality among women in Nepal: effects of vitamin A and β-carotene supplementation. American Journal of Epidemiology, 152(6), 542-7. https://doi.org/10.1093/aje/152.6.542

Krinsky, N.I. (1993). Actions of carotenoids in biological systems. Annual Review of Nutrition, 13(1), 561-87. https://doi.org/10.1146/annurev.nu.13.070193.003021

Burton, G.W., & Ingold, K.U. (1984). Beta-carotene: an unusual type of lipid antioxidant. Science, 224(4649), 569-73. https://doi.org/10.1126/science.6710156

Sethuram, R., Bai, D., & Abu-Soud, H.M. (2022). Potential role of zinc in the COVID-19 disease process and its probable impact on reproduction. Reproductive Sciences, 29, 1-6. https://doi.org/10.1007/s43032-020-00400-6

Sies, H. (1997). Oxidative stress: oxidants and antioxidants. Experimental Physiology: Translation and Integration, 82(2), 291-5. https://doi.org/10.1113/expphysiol.1997.sp004024

Ho, Y.S., Magnenat, J.L., Gargano, M., & Cao, J. (1998). The nature of antioxidant defense mechanisms: a lesson from transgenic studies. Environmental Health Perspectives, 106(suppl 5), 1219-28. https://doi.org/10.1289/ehp.98106s51219

Zelko, I.N., Mariani, T.J., & Folz, R.J. (2002). Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radical Biology and Medicine, 33(3), 337-49. https://doi.org/10.1016/S0891-5849(02)00905-X

Bannister, J.V., Bannister, W.H., & Rotilio, G. (1987). Aspects of the structure, function, and applications of superoxide dismutas. Critical Reviews in Biochemistry, 22(2), 111-80. https://doi.org/10.3109/10409238709083738

Johnson, F., & Giulivi, C. (2005). Superoxide dismutases and their impact upon human health. Molecular Aspects of Medicine, 26(4-5), 340-52. https://doi.org/10.1016/j.mam.2005.07.006

Wuerges, J., Lee, J.W., Yim, Y.I., Yim, H.S., Kang, S.O., & Carugo, K.D. (2004). Crystal structure of nickel-containing superoxide dismutase reveals another type of active site. Proceedings of the National Academy of Sciences, 101(23), 8569-74. https://doi.org/10.1073/pnas.0308514101

Corpas, F.J., Barroso, J.B., & del Rı́o, L.A. (2001). Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends in Plant Science, 6(4), 145-50. https://doi.org/10.1016/S1360-1385(01)01898-2

Corpas, F.J., Fernández-Ocaña, A., Carreras, A., Valderrama, R., Luque, F., Esteban, F.J., Rodríguez-Serrano, M., Chaki, M., Pedrajas, J.R., Sandalio, L.M., & del Río, L.A. (2006). The expression of different superoxide dismutase forms is cell-type dependent in olive (Olea europaea L.) leaves. Plant and Cell Physiology, 47(7), 984-94. https://doi.org/10.1093/pcp/pcj071

Cao, X., Antonyuk, S.V., Seetharaman, S.V., Whitson, L.J., Taylor, A.B., Holloway, S.P., Strange, R.W., Doucette, P.A., Valentine, J.S., Tiwari, A., & Hayward, L.J. (2008). Structures of the G85R variant of SOD1 in familial amyotrophic lateral sclerosis. Journal of Biological Chemistry, 283(23), 16169-77. https://doi.org/10.1074/jbc.M801522200

Chelikani, P., Fita, I., & Loewen, P.C. (2004). Diversity of structures and properties among catalases. Cellular and Molecular Life Sciences CMLS, 61(2), 192-208. https://doi.org/10.1007/s00018-003-3206-5

Gaetani, G.F., Ferraris, A.M., Rolfo, M., Mangerini, R., Arena, S., & Kirkman, H.N. (1996). Predominant role of catalase in the disposal of hydrogen peroxide within human erythrocytes. Blood, 87(4), 1595-1599. https://doi.org/10.1182/blood.V87.4.1595.bloodjournal8741595

Eisner, T., & Aneshansley, D.J. (1999). Spray aiming in the bombardier beetle: photographic evidence. Proceedings of the National Academy of Sciences, 96(17), 9705-9. https://doi.org/10.1073/pnas.96.17.9705

Meister, A., & Anderson, M.E. (1983). Glutathione. Annual Review of Biochemistry, 52(1), 711-60. https://doi.org/10.1146/annurev.bi.52.070183.003431

Brigelius-Flohé, R. (1999). Tissue-specific functions of individual glutathione peroxidases. Free Radical Biology and Medicine, 27(9-10), 951-65. https://doi.org/10.1016/S0891-5849(99)00173-2

Hayes, J.D., Flanagan, J.U., & Jowsey, I.R. (2005). Glutathione transferases. Annu. Rev. Pharmacol. Toxicol., 45, 51-88. https://doi.org/10.1146/annurev.pharmtox.45.120403.095857

Fielding, B.A., Price, D.A., & Houlton, C.A. (1983). Enzyme immunoassay for urinary albumin. Clinical Chemistry, 29(2), 355-7. https://doi.org/10.1093/clinchem/29.2.355

Young, I.S., & Woodside, J.V. (2001). Antioxidants in health and disease. Journal of Clinical Pathology, 54(3), 176-86. https://doi.org/10.1136/jcp.54.3.176

Temme, E.H., Zhang, J., Schouten, E.G., & Kesteloot, H. (2001). Serum bilirubin and 10-year mortality risk in a Belgian population. Cancer Causes & Control, 12(10), 887-94. https://doi.org/10.1023/A:1013794407325

Stocker, R., Yamamoto, Y., McDonagh, A.F., Glazer, A.N., & Ames, B.N. (1987). Bilirubin is an antioxidant of possible physiological importance. Science, 235(4792), 1043-6. https://doi.org/10.1126/science.3029864

Newman, D.J., & Price, C.P. (1999). Renal function and nitrogen metabolism. In C.A. Brutis, & E.R. Ashwood (Eds.), Tietz textbook of clinical chemistry (pp. 1204-64). WB Saunders, Philadelphia.

Murray, K., Rodwell, V., Bender, D., Botham, K.M., Weil, P.A., & Kennelly, P.J. (2009). Harper’s illustrated biochemistry (vol. 28). New York: McGraw-Hill.

Alderman, M.H., Cohen, H., Madhavan, S., & Kivlighn, S. (1999). Serum uric acid and cardiovascular events in successfully treated hypertensive patients. Hypertension, 34(1), 144-50. https://doi.org/10.1161/01.HYP.34.1.144

Kaur, H., & Halliwell, B. (1990). Action of biologically-relevant oxidizing species upon uric acid. Identification of uric acid oxidation products. Chemico-biological Interactions, 73(2-3), 235-47. https://doi.org/10.1016/0009-2797(90)90006-9

Torun, A.N., Kulaksizoglu, S., Kulaksizoglu, M., Pamuk, B.O., Isbilen, E., & Tutuncu, N.B. (2009). Serum total antioxidant status and lipid peroxidation marker malondialdehyde levels in overt and subclinical hypothyroidism. Clinical Endocrinology, 70(3), 469-74. https://doi.org/10.1111/j.1365-2265.2008.03348.x

Tammy, M., William, B., & Bettger, J. (1990). The physiological role of zinc as an antioxidant free radical. Biol. Med., 8, 281-91. https://doi.org/10.1016/0891-5849(90)90076-U

Lepedda, A.J., Zinellu, A., Nieddu, G., Zinellu, E., Carru, C., Spirito, R., Guarino, A., De Muro, P., & Formato, M. (2013). Protein sulfhydryl group oxidation and mixed-disulfide modifications in stable and unstable human carotid plaques. Oxidative Medicine and Cellular Longevity, 2013, Art. ID 403973, 8 pp. https://doi.org/10.1155/2013/403973

Kägi, J.H., & Hunziker, P. (1989). Mammalian metallothionein. Biological Trace Element Research, 21(1), 111-8. https://doi.org/10.1007/BF02917243

Swerdel, M.R., & Cousins, R.J. (1982). Induction of kidney metallothionein and metallothionein messenger RNA by zinc and cadmium. The Journal of Nutrition, 112(4), 801-9. https://doi.org/10.1093/jn/112.4.801

Menard, M.P., McCormick, C.C., & Cousins, R.J. (1981). Regulation of intestinal metallothionein biosynthesis in rats by dietary zinc. The Journal of Nutrition, 111(8), 1353-61. https://doi.org/10.1093/jn/111.8.1353

McCall, K.A., Huang, C.C., & Fierke, C.A. (2000). Function and mechanism of zinc metalloenzymes. The Journal of Nutrition, 130(5), 1437S-46S. https://doi.org/10.1093/jn/130.5.1437S

Published
2022-02-19
How to Cite
Hassan, E. A., Al-Zuhairi , W. S., & Ibrahim, W. A. (2022). Antioxidants and Their Role in Preventing Diseases: A Review. Earthline Journal of Chemical Sciences, 7(2), 165-182. https://doi.org/10.34198/ejcs.7222.165182
Section
Articles