Some aminonitroethylenes and their interactions with each other – A DFT treatment
Abstract
The main backbone of some explosive materials contains some of aminonitroethylenes in the embedded form such as 1,l -diamino-2,2-dinitroethylene (FOX-7). In the present study, cis, trans and geminal aminonitroethylenes and their mutual composites are considered within the constraints of density functional theory (DFT) mainly at the level of B3LYP/6-311++G(d,p). For the thermo chemical data also some thermo chemical recipes have been employed. At the level of B3LYP/6-311++G(d,p), all of the structures possess exothermic heat of formation values and also have favorable Gibbs free energy of formation values. The calculations reveal that they are electronically stable. Various quantum chemical data have been collected and discussed including UV-VIS spectra.
References
Agrawal, J.P. (2010). High energy materials. Weinheim: Wiley-VCH. https://doi.org/10.1002/9783527628803
Trzciński, W.A., Cudziło, S., Chyłek, Z., & Szymańczyk, L. (2008). Detonation properties of 1,1-diamino-2,2-dinitroethene (DADNE). J. Hazard. Mater., 157, 605-612. https://doi.org/10.1016/j.jhazmat.2008.01.026
Gordon, P.F., & Gregory, P. (1987). Organic chemistry in colour. Berlin: Spriger-Verlag.
Dwyer, T.J., & Jasien, P.G. (1996). Electronic effects in a prototype push-pull ethylene: a study of rotational barriers in C4H4N4 isomers. Journal of Molecular Structure: THEOCHEM, 363, 139-150. https://doi.org/10.1016/0166-1280(95)04435-3
Lister, D.G., Macdonald, J.N., & N.L. Owen. (1978). Internal rotation and inversion. London: Academic Press.
Anslyn, E.V., & Dougherty, D.A. (2006). Modern physical organic chemistry. Sausalito, California: University Science Books.
Ferguson, L.N. (1969). The modern structural theory of organic chemistry. New Delhi: Prentice-Hall of India.
Shvo, Y., & Shanan-Atidi, H. (1969). Internal rotation in olefins. I. Kinetic investigation by nuclear magnetic resonance. J. Am. Chem. Soc., 91(24), 6689-6689. https://doi.org/10.1021/ja01052a025
Smith, M.A., & Jasien, P.G. (1998). A CIS study of the solvent effects on the electronic absorption spectra of push-pull ethylenes. Journal of Molecular Structure: THEOCHEM, 429, 131-141. https://doi.org/10.1016/S0166-1280(97)00346-1
Carter, R.E., Dahlqvist, K-I., & Berntsson, P. (1977). N.m.r. studies of a rate process in a bridged biphenyl: Resolution of a discrepancy between n.m.r. and polarimetric kinetic data. Organic Magnetic Resonance, 9(1), 44-48. https://doi.org/10.1002/mrc.1270090109
Sandström, J., Wennerbeck, I., Nilsson, B., Enzell, C., & Matsuno, T. (1978). Studies of polarized ethylenes. Part XII. Conformational analysis of 2-dimethylamino-2-methylthio ethylenes. Acta Chemica Scandinavia, B32, 421-430.
Favini, G., Gamba, A., & Todeschini, R. (1985). A theoretical conformational study of push–pull ethylenes. Part 1. Substituted methyleneimidazolidines. J. Chem. Soc., Perkin Trans., 2, 915-920. https://doi.org/10.1039/P29850000915
Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D., & Darnell, J. (2000). Noncovalent bonds. Molecular cell biology (4th ed.). New York: W.H. Freeman.
Schalley, C.A. (2012). Introduction. In Analytical methods in supramolecular chemistry (2nd ed.). New York: Wiley.
Otero de la Roza, A., & DiLabio, G.A. (Eds.). (2017). Non-covalent interactions in quantum chemistry and physics: Theory and applications. Amsterdam: Elsevier.
Maharramov, A.M., Mahmudov, K.T., Kopylovich, M.N., & Pombeiro, A.J. (2016). Non-covalent ınteractions in the synthesis and design of new compounds. New York: Wiley.
Hobza, P., & Müller-Dethlefs, K. (2009). Non-covalent interactions: Theory and experiment. Theoretical and computational chemistry series. London: Royal Society of Chemistry.
Alkorta, I., Elguero, J., & Frontera, A. (2020). Not only hydrogen bonds: Other noncovalent interactions. Crystals, 10(3), 180. https://doi.org/10.3390/cryst10030180
Stewart, J.J.P. (1989). Optimization of parameters for semi-empirical methods I. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208
Stewart, J.J.P. (1989). Optimization of parameters for semi-empirical methods II. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209
Leach, A.R. (1997). Molecular modeling. Essex: Longman.
Kohn, W., & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133
Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.
Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098
Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159
Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785
SPARTAN 06 (2006). Wavefunction Inc. Irvine CA, USA.
Dewar, M.J.S. (1969). The molecular orbital theory of organic chemistry, New York: McGraw-Hill.
Dewar, M.J.S., & Dougherty, R.C. (1975). The PMO theory of organic chemistry, New York: Plenum-Rosetta. https://doi.org/10.1007/978-1-4613-4404-9
Dmitriev, I. S. (1981). Molecules without chemical bonds. Moscow: Mir Pub.
Fleming, I. (1976). Frontier orbitals and organic reactions. London: Wiley.
Turro, N.J. (1991). Modern molecular photochemistry. Sausalito: University Science Books.
This work is licensed under a Creative Commons Attribution 4.0 International License.