Geometrical isomers of lumogallion and interaction of its trans isomer with gallium cations – A DFT treatment
Abstract
In the present study, first cis and trans-lumogallion, then the interaction of its trans isomer with gallium +1 and +3 cations (one by one) in vacuum conditions have been investigated within the constraints of density functional theory at the level of B3LYP/6-31++G(d,p). The collected data revealed that all the structures considered have exothermic heat of formation and favorable Gibbs free energy of formation values. They are thermally favored and electronically stable at the standard states. Various structural and quantum chemical data have been collected and discussed, including IR and UV-VIS spectra.
References
Li, H., Zu, W., Liu, F., Wang, Y., Yang, Y., Yang, X., & Liu, C. (2019). Determination of gallium in water samples by atomic emission spectrometry based on solution cathode glow discharge. Spectrochimica Acta Part B: Atomic Spectroscopy, 152, 25-29. https://doi.org/10.1016/j.sab.2018.12.004
Yu, H. S., & Liao, W. T. (2011). Gallium: Environmental pollution and health effects. In J. O. Nriagu (Ed.), Encyclopedia of environmental health (pp. 829-833). Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-444-52272-6.00474-8
Ivanoff, C.S., Ivanoff, A.E., & Hottel, T.L. (2012). Gallium poisoning: A rare case report, Food and Chemical Toxicology, 50(29), 212-215. https://doi.org/10.1016/j.fct.2011.10.041
Tanaka, A. (2004). Toxicity of indium arsenide, gallium arsenide, and aluminum gallium arsenide, Toxicology and Applied Pharmacology, 198(3), 405-411. https://doi.org/10.1016/j.taap.2003.10.019
Yandem, G., & Jabłońska-Czapla, M. (2024). Review of indium, gallium, and germanium as emerging contaminants: occurrence, speciation and evaluation of the potential environmental impact. Archives of Environmental Protection, 50(3), 84-99. https://doi.org/10.24425/aep.2024.151688
Lurie, Ju. (1975). Handbook of analytical chemistry. Moscow: Mir Pub.
Kina, K., & Ishibashi, N. (1974). Effect of the nonionic surfactant on the fluorometric determination of gallium using lumogallion. Microchemical Journal, 19(1), 26-31. https://doi.org/10.1016/0026-265X(74)90094-0
Abramenkova, O.I., Amelin, V.G., Aleshin, N.S., & Korolev D.S. (2011). Solid-phase fluorescence determination of gallium(III) with morin and lumogallion immobilized on cellulose matrices. J Anal Chem., 66, 1212-1216. https://doi.org/10.1134/S1061934811100029
Vitense, K.R., & McGown, L.B. (1987). Simultaneous determination of aluminium(III) and gallium(III) with lumogallion by phase-resolved fluorimetry. Analyst, 112, 1273-1277. https://doi.org/10.1039/AN9871201273
Imasaka, T., Harada, T., & Ishibashi, N. (1981). Fluorimetric determination of gallium with lumogallion by flow injection analysis based on solvent extraction. Analytica Chimica Acta, 129, 195-203. https://doi.org/10.1016/S0003-2670(01)84132-5
Nadzhafova, O.Yu., Zaporozhets, O.A., Rachinska, I.V., Fedorenko, L.L., & Yusupov, N. (2005). Silica gel modified with lumogallion for aluminum determination by spectroscopic methods. Talanta, 67(4), 772. https://doi.org/10.1016/j.talanta.2005.04.002
Du, M., & Huie, C.W. (2001). Sensitive and selective determination of aluminum by peroxyoxalate chemiluminescence detection of the lumogallion complex. Analytica Chimica Acta, 443(2), 269-276. https://doi.org/10.1016/S0003-2670(01)01206-5
Stewart, J.J.P. (1989). Optimization of parameters for semi-empirical methods I. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208
Stewart, J.J.P. (1989). Optimization of parameters for semi-empirical methods II. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209
Leach, A.R. (1997). Molecular modeling. Essex: Longman.
Kohn, W., & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133
Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.
Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098
Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159
Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785
SPARTAN 06 (2006). Wavefunction Inc. Irvine CA, USA.
Glasstone, S & Lewis, D. (1970). Elements of physical chemistry. London: Macmillan.
Durant, P.J., & Durant, B. (1972). Introduction to advanced inorganic chemistry. London: Longman.
Shrive, D.F, Atkins, P.W, & Langford, C.H. (1994). Inorganic chemistry. Oxford: Oxford University Press.
Fleming, I. (1976). Frontier orbitals and organic reactions. London: Wiley.
This work is licensed under a Creative Commons Attribution 4.0 International License.