Some isomers and tautomers of thiobarbital – A DFT treatment
Abstract
Thiobarbital is characterized with its sedative and hypnotic properties; however it exhibits an antithyroid effect. Moreover it has a narrow range of therapeutic and toxic dose. In the present study, firstly thiobarbital and one of its structural isomer, constructed by mutual sulphur/oxygen replacements have been investigated thoroughly within the restrictions of density functional theory at the level of B3LYP/6-311++G(d,p). Secondly, its 1,3-proton tautomers have been considered at the same level of calculation. The collected data revealed that all the structures considered have exothermic heat of formation and favorable Gibbs free energy of formation values. They are thermally favored and electronically stable at the standard states. Various structural and quantum chemical data have been collected and discussed, including IR and UV-VIS spectra.
References
Fischer, E., & Dilthey, A. (1904). Ueber C-Dialkylbarbitursäuren und über die Ureïde der Dialkylessigsäuren. Justus Liebigs Annalen der Chemie, 335(3), 334-368. https://doi.org/10.1002/jlac.19043350303
Carrington, H.C. (1944). The action of phosphorus pentasulphide on barbituric acids. Journal of the Chemical Society (Resumed), 124-126. https://doi.org/10.1039/JR9440000124
Turner, C.W. (1946). Comparison of the effect of feeding thiobarbital and thiouracil on the thyroid gland of the chick. Poultry Science, 25(5), 517-520. https://doi.org/10.3382/ps.0250517
Bartels, E.C. (1945). Use of thiobarbital in the treatment of hyperthyroidism. JAMA, 129(14), 932-935. https://doi.org/10.1001/jama.1945.02860480012003
Astwood, E.B. (1945). Some observations on the use of thiobarbital as an antithyroid agent in the treatment of graves’ disease. The Journal of Clinical Endocrinology & Metabolism, 5(8), 345-352. https://doi.org/10.1210/jcem-5-8-345
Bartels, E.C. (1945). Use of thiobarbital in the treatment of hyperthyroidism. JAMA, 129(14), 932-935. https://doi.org/10.1001/jama.1945.02860480012003
Bush, M.T., Mazel, P., & Chambers, J. (1961). The metabolic fate of thiobarbiturates: thiobarbital in man. The journal of Pharmacology and Experimental Therapeutics, 134(1), 110-116. https://doi.org/10.1016/S0022-3565(25)26137-7
Lahey, F.H., Bartels, E.C. (1947). The use of thiouracil, thiobarbital and propyl thiouracil in patients with hyperthyroidism. Annals of Surgery, 125(5), 572-581.
Mansberger, A.R., Jr. (1988). One hundred years of surgical management of hyperthyroidism. Ann. Surg., 207(6), 724-9. https://doi.org/10.1097/00000658-198806000-00012. PMID: 3291793; PMCID: PMC1493546.
McGavack, T.H. (1948). Status of antithyroid substances in thyroid disease. The American Journal of Medicine, 5(1), 90-99. https://doi.org/10.1016/0002-9343(48)90014-X
Németh, S., Viskupic, E., & Murgas, K., (1985). Intravenous thiobarbital anaesthesia for determination of liver glycogen phosphorylase activity in rats subjected to various forms of stress. Endocrinologia Experimentalis, 19(2), 91-95. PMID: 3874768.
Bloch, A., Bock, A., Dietz, O., Litzke, L.F., & Moldenhauer, R. (1986). New practicable techniques for injection anaesthesia in swine. Monatshefte für Veterinärmedizin, 41(15), 534-537.
Paulin, J., & Lofgren, J. (2023). Anesthesia and analgesia in laboratory rodents. In M. C. Dyson, P. Jirkof, J. Lofgren, E. A. Nunamaker, & D. Pang (Eds.), American College of Laboratory Animal Medicine (3rd ed., Chapter 14, pp. 287-356). New York: Academic Press. https://doi.org/10.1016/B978-0-12-822215-7.00007-X
Huang, J.-D. (1990). Comparative drug exsorption in the perfused rat intestine. Journal of Pharmacy and Pharmacology, 42, 167-170. https://doi.org/10.1111/j.2042-7158.1990.tb05378.x
Zhao, G.Q. (1993). Free radical retinal damage in rabbits of experimental acute ocular hypertension. Chinese Journal of Ophthalmology, 29(5), 293-295. PMID: 8168396.
Méndez, E., Cerdá, M.F., Gancheff, J.S., Torres, J., Kremer, C., Castiglioni, J., Kieninger, M., & Ventura, O.N. (2007). Tautomeric forms of 2-thiobarbituric acid as studied in the solid, in polar solutions, and on gold nanoparticles. J. Phys. Chem. C, 111(8), 3369-3383. https://doi.org/10.1021/jp0628176
Moskalenko, I.V., Shilovskikh, V.V., Nesterov, P.V., Novikov, A.S., Omarova, M., Sadovnichii, R.V., Gurzhiy, V.V., Orekhov, N.D., & Skorb, E.V. (2023). Supramolecular assemblies of melamine-2-thiobarbiturate and melamine-barbiturate-2-thiobarbiturate: experimental and theoretical studies. Crystals, 13(9), 1302. https://doi.org/10.3390/cryst13091302
Schade, A., Tchernook, I., Bauer, M., Oehlke, A., Breugst, M., Friedrich, J., & Spange, S. (2017). Kinetics of electrophilic alkylations of barbiturate and thiobarbiturate anions. The Journal of Organic Chemistry, 82(16), 8476-8488. https://doi.org/10.1021/acs.joc.7b01223
Sharma, A., Zamisa, S.J., Noki, S., Almarhoon, Z., El-Faham, A., la Torre, B.G.d., & Albericio, F. (2018). Crystal structure, spectroscopic studies and theoretical studies of thiobarbituric acid derivatives: Understanding the hydrogen-bonding patterns. Acta Crystallogr. Sect. C Struct. Chem., 74, 1703-1714. https://doi.org/10.1107/S2053229618015516
Stewart, J.J.P. (1989). Optimization of parameters for semi-empirical methods I. J. Comput. Chem., 10, 209-220. https://doi.org/10.1002/jcc.540100208
Stewart, J.J.P. (1989). Optimization of parameters for semi-empirical methods II. J. Comput. Chem., 10, 221-264. https://doi.org/10.1002/jcc.540100209
Leach, A.R. (1997). Molecular modeling. Essex: Longman.
Kohn, W., & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133
Parr, R.G., & Yang, W. (1989). Density functional theory of atoms and molecules. London: Oxford University Press.
Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098
Vosko, S.H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200-1211. https://doi.org/10.1139/p80-159
Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785
SPARTAN 06 (2006). Wavefunction Inc. Irvine CA, USA.
Richmond, T.J. (1984). Solvent accessible surface area and excluded volume in proteins: Analytical equations for overlapping spheres and implications for the hydrophobic effect. Journal of Molecular Biology, 178(1), 63-89. https://doi.org/10.1016/0022-2836(84)90231-6
Fleming, I. (1976). Frontier orbitals and organic reactions. London: Wiley.
Anslyn, E.V., & Dougherty, D.A. (2006). Modern physical organic chemistry. Sausalito, California: University Science Books.
This work is licensed under a Creative Commons Attribution 4.0 International License.