Mathematical Model and Analysis of Toxicant Effect on Human Health in Fuzzy Environment

  • Kenneth Ojotogba Achema Joseph Sarwuan Tarka University, Makurdi, Benue State, Nigeria
Keywords: toxicant, mathematical model, fuzzy, DNA methylation

Abstract

A nonlinear mathematical model is proposed and analyzed to examine the impact of a toxicant effect on human health in fuzzy environment, specifically its detrimental effects on the reproductive health of a subclass within the species. By applying stability theory, it is demonstrated that the overall species population stabilizes at an equilibrium level. Additionally, findings indicate that as the toxicant emission rate increases, the population density of the subclass severely affected by the toxicant—rendered incapable of reproduction—also rises.

References

Trumble, B. C., & Finch, C. E. (2019). The exposome in human evolution: From dust to diesel. Quarterly Review of Biology, 94(4), 333–394. https://doi.org/10.1086/706768

Tapia, J., Murray, J., Ormachea, M., Tirado, N., & Nordstrom, D. K. (2019). Origin, distribution, and geochemistry of arsenic in the Altiplano-Puna Plateau of Argentina, Bolivia, Chile, and Peru. Science of the Total Environment, 678, 309–325. https://doi.org/10.1016/j.scitotenv.2019.04.084

Crews, D., & Gore, A. C. (2012). Epigenetic synthesis: A need for a new paradigm for evolution in a contaminated world. F1000 Biology Reports, 4, 18.

Barrett, R., & Schluter, D. (2008). Adaptation from standing genetic variation. Trends in Ecology & Evolution, 23(1), 38–44. https://doi.org/10.1016/j.tree.2007.09.008

Martin, E. M., & Fry, R. C. (2018). Environmental influences on the epigenome: Exposure-associated DNA methylation in human populations. Annual Review of Public Health, 39, 309–333. https://doi.org/10.1146/annurev-publhealth-040617-014629

Russo, G. L., Vastolo, V., Ciccarelli, M., Albano, L., Macchia, P. E., & Ungaro, P. (2017). Dietary polyphenols and chromatin remodeling. Critical Reviews in Food Science and Nutrition, 57(12), 2589–2599. https://doi.org/10.1080/10408398.2015.1062353

Nettore, I. C., Franchini, F., Palatucci, G., Macchia, P. E., & Ungaro, P. (2021). Epigenetic mechanisms of endocrine-disrupting chemicals in obesity. Biomedicines, 9(11), 1716. https://doi.org/10.3390/biomedicines9111716

Lieb, J. D., Beck, S., Bulyk, M. L., Farnham, P., Hattori, N., Henikoff, S., Liu, X. S., Okumura, K., Shiota, K., Ushijima, T., et al. (2006). Applying whole-genome studies of epigenetic regulation to study human disease. Cytogenetic and Genome Research, 114(1), 1–15. https://doi.org/10.1159/000091922

Okano, M., Bell, D. W., Haber, D. A., & Li, E. (1999). DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 99(3), 247–257. https://doi.org/10.1016/S0092-8674(00)81656-6

Rao, R., & Leibler, S. (2022). Evolutionary dynamics, evolutionary forces, and robustness: A nonequilibrium statistical mechanics perspective. Proceedings of the National Academy of Sciences, 119(14), e2112083119. https://doi.org/10.1073/pnas.2112083119

Zhang, Z., Ramstein, G., Schuster, M., Li, C., Contoux, C., & Yan, Q. (2014). Aridification of the Sahara Desert caused by Tethys Sea shrinkage during the Late Miocene. Nature, 513(7518), 401–404. https://doi.org/10.1038/nature13705

Dupont, L. (2003). Reconstructing pathways of aeolian pollen transport to the marine sediments along the coastline of SW Africa. Quaternary Science Reviews, 22(2–4), 157–174. https://doi.org/10.1016/S0277-3791(02)00032-X

Thakur, S. A., Hamilton, R. F., & Holian, A. (2008). Role of scavenger receptor A family in lung inflammation from exposure to environmental particles. Journal of Immunotoxicology, 5(2), 151–157. https://doi.org/10.1080/15476910802085863

Novakowski, K. E., Yap, N. V. L., Yin, C., Sakamoto, K., Heit, B., Golding, G. B., & Bowdish, D. M. E. (2018). Human-specific mutations and positively selected sites in MARCO confer functional changes. Molecular Biology and Evolution, 35(2), 440–450. https://doi.org/10.1093/molbev/msx298

Hamilton, R. F., Thakur, S. A., Mayfair, J. K., & Holian, A. (2006). MARCO mediates silica uptake and toxicity in alveolar macrophages from C57BL/6 mice. Journal of Biological Chemistry, 281(44), 34218–34226. https://doi.org/10.1074/jbc.M605229200

Sun, W., Hong, Y., Li, T., Chu, H., Liu, J., & Feng, L. (2022). Application of sulfur-coated magnetic carbon nanotubes for extraction of some polycyclic aromatic hydrocarbons from water resources. Chemosphere, 309, 136632. https://doi.org/10.1016/j.chemosphere.2022.136632

Liu, Y., Zhang, H., Zhang, H., Niu, Y., Fu, Y., Nie, J., Yang, A., Zhao, J., & Yang, J. (2018). Mediation effect of AhR expression between polycyclic aromatic hydrocarbons exposure and oxidative DNA damage among Chinese occupational workers. Environmental Pollution, 243, 972–977. https://doi.org/10.1016/j.envpol.2018.09.014

Schlebusch, C. M., Gattepaille, L. M., Engström, K., Vahter, M., Jakobsson, M., & Broberg, K. (2015). Human adaptation to arsenic-rich environments. Molecular Biology and Evolution, 32(6), 1544–1555. https://doi.org/10.1093/molbev/msv046

Schlebusch, C. M., Lewis, C. M., Vahter, M., Engström, K., Tito, R. Y., Obregón-Tito, A. J., Huerta, D., Polo, S. I., Medina, Á. C., Brutsaert, T. D., et al. (2013). Possible positive selection for an arsenic-protective haplotype in humans. Environmental Health Perspectives, 121(1), 53–58. https://doi.org/10.1289/ehp.1205504

Fraga, M. F., Ballestar, E., Paz, M. F., Ropero, S., Setien, F., Ballestar, M. L., Heine-Suñer, D., Cigudosa, J. C., Urioste, M., Benitez, J., et al. (2005). Epigenetic differences arise during the lifetime of monozygotic twins. Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10604–10609. https://doi.org/10.1073/pnas.0500398102

Chen, C., Qi, H., Shen, Y., Pickrell, J., & Przeworski, M. (2017). Contrasting determinants of mutation rates in germline and soma. Genetics, 207(1), 255–267. https://doi.org/10.1534/genetics.117.1114

Zhou, Y., He, F., Pu, W., Gu, X., Wang, J., & Su, Z. (2020). The impact of DNA methylation dynamics on the mutation rate during human germline development. G3: Genes, Genomes, Genetics, 10(10), 3337–3346. https://doi.org/10.1534/g3.120.401511

Skinner, M. K. (2016). Epigenetic transgenerational inheritance. Nature Reviews Endocrinology, 12(2), 68–70. https://doi.org/10.1038/nrendo.2015.206

Skinner, M. K., Guerrero-Bosagna, C., & Haque, M. M. (2015). Environmentally induced epigenetic transgenerational inheritance of sperm epimutations promote genetic mutations. Epigenetics, 10(8), 762–771. https://doi.org/10.1080/15592294.2015.1062207

Leung, Y.-K., Ouyang, B., Niu, L., Xie, C., Ying, J., Medvedovic, M., Chen, A., Weihe, P., Valvi, D., Grandjean, P., et al. (2018). Identification of sex-specific DNA methylation changes driven by specific chemicals in cord blood in a Faroese birth cohort. Epigenetics, 13(3), 290–300.

Yauk, C., Polyzos, A., Rowan-Carroll, A., Somers, C. M., Godschalk, R. W., Van Schooten, F. J., Berndt, M. L., Pogribny, I. P., Koturbash, I., Williams, A., et al. (2008). Germ-line mutations, DNA damage, and global hypermethylation in mice exposed to particulate air pollution in an urban/industrial location. Proceedings of the National Academy of Sciences of the United States of America, 105(2), 605–610. https://doi.org/10.1073/pnas.0705896105

Schuller, A., Bellini, C., Jenkins, T., Eden, M., Matz, J., Oakes, J., & Montrose, L. (2021). Simulated wildfire smoke significantly alters sperm DNA methylation patterns in a murine model. Toxics, 9(9), 199. https://doi.org/10.3390/toxics9090199

Cheng, Y., Tang, Q., Lu, Y., Li, M., Zhou, Y., Wu, P., Li, J., Pan, F., Han, X., Chen, M., et al. (2022). Semen quality and sperm DNA methylation in relation to long-term exposure to air pollution in fertile men: A cross-sectional study. Environmental Pollution, 300, 118994. https://doi.org/10.1016/j.envpol.2022.118994

Zama, A. M., & Uzumcu, M. (2009). Fetal and neonatal exposure to the endocrine disruptor methoxychlor causes epigenetic alterations in adult ovarian genes. Endocrinology, 150(10), 4681–4691. https://doi.org/10.1210/en.2009-0499

Achema, K. O., Okuonghae, D., & Tongo, I. (2021). Dual-level toxicity assessment of biodegradable pesticides to aquatic species. Ecological Complexity, 45, 100911. https://doi.org/10.1016/j.ecocom.2021.100911

Kumar, A., Agrawal, A. K., Hasan, A. K., & Misra, A. K. (2016). Modeling the effect of toxicant on the deformity in a subclass of a biological species. Modeling Earth Systems and Environment, 2, 40. https://doi.org/10.1007/s40808-016-0086-x

Barros, L. C. de, Ferreira Leite, M. B., & Bassanezi, R. C. (2003). The SI epidemiological models with a fuzzy transmission parameter. Computers & Mathematics with Applications, 45, 1619–1628. https://doi.org/10.1016/S0898-1221(03)00141-X

Mickens, R. E. (2007). Numerical integration of population model satisfying laws: NSFD methods. Journal of Biological Dynamics, 1, 427–436. https://doi.org/10.1080/17513750701605598

Verna, R., Tiwari, S., & Upadhyay, R. K. (2017). Dynamical behaviour of fuzzy SIR epidemic model. In Proceedings of the Conference of the European Society for Fuzzy Logic and Technology (pp. 482–492). https://doi.org/10.1007/978-3-319-66827-7_45

Published
2025-06-16
How to Cite
Achema, K. O. (2025). Mathematical Model and Analysis of Toxicant Effect on Human Health in Fuzzy Environment. Earthline Journal of Mathematical Sciences, 15(5), 723-748. https://doi.org/10.34198/ejms.15525.723748
Section
Articles