Mathematical Model and Analysis of Toxicant Effect on Human Health in Fuzzy Environment
Abstract
A nonlinear mathematical model is proposed and analyzed to examine the impact of a toxicant effect on human health in fuzzy environment, specifically its detrimental effects on the reproductive health of a subclass within the species. By applying stability theory, it is demonstrated that the overall species population stabilizes at an equilibrium level. Additionally, findings indicate that as the toxicant emission rate increases, the population density of the subclass severely affected by the toxicant—rendered incapable of reproduction—also rises.
References
Trumble, B. C., & Finch, C. E. (2019). The exposome in human evolution: From dust to diesel. Quarterly Review of Biology, 94(4), 333–394. https://doi.org/10.1086/706768
Tapia, J., Murray, J., Ormachea, M., Tirado, N., & Nordstrom, D. K. (2019). Origin, distribution, and geochemistry of arsenic in the Altiplano-Puna Plateau of Argentina, Bolivia, Chile, and Peru. Science of the Total Environment, 678, 309–325. https://doi.org/10.1016/j.scitotenv.2019.04.084
Crews, D., & Gore, A. C. (2012). Epigenetic synthesis: A need for a new paradigm for evolution in a contaminated world. F1000 Biology Reports, 4, 18.
Barrett, R., & Schluter, D. (2008). Adaptation from standing genetic variation. Trends in Ecology & Evolution, 23(1), 38–44. https://doi.org/10.1016/j.tree.2007.09.008
Martin, E. M., & Fry, R. C. (2018). Environmental influences on the epigenome: Exposure-associated DNA methylation in human populations. Annual Review of Public Health, 39, 309–333. https://doi.org/10.1146/annurev-publhealth-040617-014629
Russo, G. L., Vastolo, V., Ciccarelli, M., Albano, L., Macchia, P. E., & Ungaro, P. (2017). Dietary polyphenols and chromatin remodeling. Critical Reviews in Food Science and Nutrition, 57(12), 2589–2599. https://doi.org/10.1080/10408398.2015.1062353
Nettore, I. C., Franchini, F., Palatucci, G., Macchia, P. E., & Ungaro, P. (2021). Epigenetic mechanisms of endocrine-disrupting chemicals in obesity. Biomedicines, 9(11), 1716. https://doi.org/10.3390/biomedicines9111716
Lieb, J. D., Beck, S., Bulyk, M. L., Farnham, P., Hattori, N., Henikoff, S., Liu, X. S., Okumura, K., Shiota, K., Ushijima, T., et al. (2006). Applying whole-genome studies of epigenetic regulation to study human disease. Cytogenetic and Genome Research, 114(1), 1–15. https://doi.org/10.1159/000091922
Okano, M., Bell, D. W., Haber, D. A., & Li, E. (1999). DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 99(3), 247–257. https://doi.org/10.1016/S0092-8674(00)81656-6
Rao, R., & Leibler, S. (2022). Evolutionary dynamics, evolutionary forces, and robustness: A nonequilibrium statistical mechanics perspective. Proceedings of the National Academy of Sciences, 119(14), e2112083119. https://doi.org/10.1073/pnas.2112083119
Zhang, Z., Ramstein, G., Schuster, M., Li, C., Contoux, C., & Yan, Q. (2014). Aridification of the Sahara Desert caused by Tethys Sea shrinkage during the Late Miocene. Nature, 513(7518), 401–404. https://doi.org/10.1038/nature13705
Dupont, L. (2003). Reconstructing pathways of aeolian pollen transport to the marine sediments along the coastline of SW Africa. Quaternary Science Reviews, 22(2–4), 157–174. https://doi.org/10.1016/S0277-3791(02)00032-X
Thakur, S. A., Hamilton, R. F., & Holian, A. (2008). Role of scavenger receptor A family in lung inflammation from exposure to environmental particles. Journal of Immunotoxicology, 5(2), 151–157. https://doi.org/10.1080/15476910802085863
Novakowski, K. E., Yap, N. V. L., Yin, C., Sakamoto, K., Heit, B., Golding, G. B., & Bowdish, D. M. E. (2018). Human-specific mutations and positively selected sites in MARCO confer functional changes. Molecular Biology and Evolution, 35(2), 440–450. https://doi.org/10.1093/molbev/msx298
Hamilton, R. F., Thakur, S. A., Mayfair, J. K., & Holian, A. (2006). MARCO mediates silica uptake and toxicity in alveolar macrophages from C57BL/6 mice. Journal of Biological Chemistry, 281(44), 34218–34226. https://doi.org/10.1074/jbc.M605229200
Sun, W., Hong, Y., Li, T., Chu, H., Liu, J., & Feng, L. (2022). Application of sulfur-coated magnetic carbon nanotubes for extraction of some polycyclic aromatic hydrocarbons from water resources. Chemosphere, 309, 136632. https://doi.org/10.1016/j.chemosphere.2022.136632
Liu, Y., Zhang, H., Zhang, H., Niu, Y., Fu, Y., Nie, J., Yang, A., Zhao, J., & Yang, J. (2018). Mediation effect of AhR expression between polycyclic aromatic hydrocarbons exposure and oxidative DNA damage among Chinese occupational workers. Environmental Pollution, 243, 972–977. https://doi.org/10.1016/j.envpol.2018.09.014
Schlebusch, C. M., Gattepaille, L. M., Engström, K., Vahter, M., Jakobsson, M., & Broberg, K. (2015). Human adaptation to arsenic-rich environments. Molecular Biology and Evolution, 32(6), 1544–1555. https://doi.org/10.1093/molbev/msv046
Schlebusch, C. M., Lewis, C. M., Vahter, M., Engström, K., Tito, R. Y., Obregón-Tito, A. J., Huerta, D., Polo, S. I., Medina, Á. C., Brutsaert, T. D., et al. (2013). Possible positive selection for an arsenic-protective haplotype in humans. Environmental Health Perspectives, 121(1), 53–58. https://doi.org/10.1289/ehp.1205504
Fraga, M. F., Ballestar, E., Paz, M. F., Ropero, S., Setien, F., Ballestar, M. L., Heine-Suñer, D., Cigudosa, J. C., Urioste, M., Benitez, J., et al. (2005). Epigenetic differences arise during the lifetime of monozygotic twins. Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10604–10609. https://doi.org/10.1073/pnas.0500398102
Chen, C., Qi, H., Shen, Y., Pickrell, J., & Przeworski, M. (2017). Contrasting determinants of mutation rates in germline and soma. Genetics, 207(1), 255–267. https://doi.org/10.1534/genetics.117.1114
Zhou, Y., He, F., Pu, W., Gu, X., Wang, J., & Su, Z. (2020). The impact of DNA methylation dynamics on the mutation rate during human germline development. G3: Genes, Genomes, Genetics, 10(10), 3337–3346. https://doi.org/10.1534/g3.120.401511
Skinner, M. K. (2016). Epigenetic transgenerational inheritance. Nature Reviews Endocrinology, 12(2), 68–70. https://doi.org/10.1038/nrendo.2015.206
Skinner, M. K., Guerrero-Bosagna, C., & Haque, M. M. (2015). Environmentally induced epigenetic transgenerational inheritance of sperm epimutations promote genetic mutations. Epigenetics, 10(8), 762–771. https://doi.org/10.1080/15592294.2015.1062207
Leung, Y.-K., Ouyang, B., Niu, L., Xie, C., Ying, J., Medvedovic, M., Chen, A., Weihe, P., Valvi, D., Grandjean, P., et al. (2018). Identification of sex-specific DNA methylation changes driven by specific chemicals in cord blood in a Faroese birth cohort. Epigenetics, 13(3), 290–300.
Yauk, C., Polyzos, A., Rowan-Carroll, A., Somers, C. M., Godschalk, R. W., Van Schooten, F. J., Berndt, M. L., Pogribny, I. P., Koturbash, I., Williams, A., et al. (2008). Germ-line mutations, DNA damage, and global hypermethylation in mice exposed to particulate air pollution in an urban/industrial location. Proceedings of the National Academy of Sciences of the United States of America, 105(2), 605–610. https://doi.org/10.1073/pnas.0705896105
Schuller, A., Bellini, C., Jenkins, T., Eden, M., Matz, J., Oakes, J., & Montrose, L. (2021). Simulated wildfire smoke significantly alters sperm DNA methylation patterns in a murine model. Toxics, 9(9), 199. https://doi.org/10.3390/toxics9090199
Cheng, Y., Tang, Q., Lu, Y., Li, M., Zhou, Y., Wu, P., Li, J., Pan, F., Han, X., Chen, M., et al. (2022). Semen quality and sperm DNA methylation in relation to long-term exposure to air pollution in fertile men: A cross-sectional study. Environmental Pollution, 300, 118994. https://doi.org/10.1016/j.envpol.2022.118994
Zama, A. M., & Uzumcu, M. (2009). Fetal and neonatal exposure to the endocrine disruptor methoxychlor causes epigenetic alterations in adult ovarian genes. Endocrinology, 150(10), 4681–4691. https://doi.org/10.1210/en.2009-0499
Achema, K. O., Okuonghae, D., & Tongo, I. (2021). Dual-level toxicity assessment of biodegradable pesticides to aquatic species. Ecological Complexity, 45, 100911. https://doi.org/10.1016/j.ecocom.2021.100911
Kumar, A., Agrawal, A. K., Hasan, A. K., & Misra, A. K. (2016). Modeling the effect of toxicant on the deformity in a subclass of a biological species. Modeling Earth Systems and Environment, 2, 40. https://doi.org/10.1007/s40808-016-0086-x
Barros, L. C. de, Ferreira Leite, M. B., & Bassanezi, R. C. (2003). The SI epidemiological models with a fuzzy transmission parameter. Computers & Mathematics with Applications, 45, 1619–1628. https://doi.org/10.1016/S0898-1221(03)00141-X
Mickens, R. E. (2007). Numerical integration of population model satisfying laws: NSFD methods. Journal of Biological Dynamics, 1, 427–436. https://doi.org/10.1080/17513750701605598
Verna, R., Tiwari, S., & Upadhyay, R. K. (2017). Dynamical behaviour of fuzzy SIR epidemic model. In Proceedings of the Conference of the European Society for Fuzzy Logic and Technology (pp. 482–492). https://doi.org/10.1007/978-3-319-66827-7_45
This work is licensed under a Creative Commons Attribution 4.0 International License.