Static Buckling Analysis of a Quadratic-Cubic Model Structure Using the Phase Plane Method and Method of Asymptotics
Abstract
The exact and asymptotic analyses of the buckling of a quadratic-cubic model structure subjected to static loading are discussed. The governing equation is first solved using the phase plane method and next, using the method of asymptotics. In the asymptotic method, we discuss the possibilities of using regular perturbation method in asymptotic expansions of the relevant variables to get an approximate analytical solution to the problem. Finally, the two results are compared using numerical results obtained with the aid of Q-Basic codes. In the two methods discussed in this work, it is clearly seen that the static buckling loads decrease as the imperfection parameters increase. It is also observed that the static buckling loads obtained using the exact method are higher than those obtained using the method of asymptotics.
References
H. E. Lindberg, Little Book of Dynamic Buckling, LCE Science/Software, 2003; [Online]. Available from: www.lindbergice.com/tech/buklbook.htm
Z. Kołakowski, Static and dynamic interactive buckling of composite columns, Journal of Theoretical and Applied Mechanics 47(1) (2009), 177-192.
V. Chitra and R. S. Priyadarsini, Dynamic buckling of composite cylindrical shells subjected to axial impulse, International Journal of Scientific & Engineering Research 4(5) (2013), 162-165.
G. J. Simitses, Effect of static preloading on the dynamic stability of structures, AIAA Journal 21(8) (1983), 1174-1180. https://doi.org/10.2514/3.8223
A. Tabiei, R. Tanov and G. J. Simitses, Numerical simulation of cylindrical laminated shells under impulsive lateral pressure, AIAA Journal 37 (1999), 629-633. https://doi.org/10.2514/2.763
R. Tanov, A. Tabiei and G. J. Simitses, Effect of static preloading on the dynamic buckling of laminated cylinders under sudden pressure, Mechanics of Composite Materials and Structures 6 (1999), 195-206. https://doi.org/10.1080/107594199305520
M. Jabareen and S. Izhak, Dynamic buckling of a beam on a nonlinear elastic foundation under step loading, Journal of Mechanics of Materials and Structures 4(7-8) (2009), 1365-1374. https://doi.org/10.2140/jomms.2009.4.1365
J. Jankowski, Buckling and vibrations of composite column-beams, Stability of Structures XIII-th Symposium – Zakopane (2012), 289-294.
A. Patil, A. Kolhe and Abdul Sayeed A. W. Shaikh, Review of buckling in various structures like plate & shells, International Journal of Research in Engineering and Technology 03(04) (2014), 396-402. https://doi.org/10.15623/ijret.2014.0304072
M. S. Qatu, Ebrahim Asadi and Wenchao Wang, Review of recent literature on static analyses of composite shells: 2000-2010, Open Journal of Composite Materials 2 (2012), 61-86. https://doi.org/10.4236/ojcm.2012.23009
M. Touati, A. Chelghoum and R. C. Barros, Numerical methods for determining the dynamic buckling critical load of thin shells: state of the art, Buletinul Institutului Politehnic Din Iaşi Publicat de Universitatea Tehnică “Gheorghe Asachi” din Iaşi Tomul LVIII (LXII) 1 (2012), 21-36.
G. J. Simitses, Buckling and postbuckling of imperfect cylindrical shells: a review, Appl. Mech. Rev. 39(10) (1986), 1517-1524. https://doi.org/10.1115/1.3149506
S. K. Sahu and P. K. Datta, Research advances in the dynamic stability behaviour of plates and shells: 1987-2005–Part 1: conservative systems, Applied Mechanics Review 60 (2007), 66-75. https://doi.org/10.1115/1.2515580
D. Y. Jeong, Analyses for lateral deflection of railroad track under quasi-static loading, Proceedings of the ASME 2013 Rail Transportation Division Fall Technical Conference, 2013, 10 pp. https://doi.org/10.1115/RTDF2013-4710
B. P. Russell, S. D. Vikram and N. G. W. Haydn, Quasi-static deformation and failure modes of composite square honeycombs, Journal of Mechanics of Materials and Structures 3(7) (2008), 1315-1340. https://doi.org/10.2140/jomms.2008.3.1315
H. Zareiforoush, H. Mohammad, Z. Komari and R. A. Mohammad, Mechanical properties of paddy grains under quasi-static compressive loading, New York Science Journal 3(7) (2010), 40-46.
E. Eglitis, K. Kalnins, O. Ozolins and R. Rikards, Numerical study of geometrical imperfections response on composite cylinders under axial load, Proceedings of 20th Nordic Seminar on Computational Mechanics, Gothenburg, Sweden, 2007, pp. 101-104.
T. Lu and T. J. Wang, Asymptotic solutions for buckling delamination induced crack propagation in the thin film-compliant substrate system, Theoretical and Applied Mechanics Letters 4(4) (2014), 041003.
R. Lewandowski, Analysis of strongly non-linear free vibrations of beams using perturbation method, Civil and Environmental Engineering Reports 1 (2005), 153-167.
S. Reboux, G. Richardson and O. Jensen, An asymptotic analysis of the buckling of a highly shear-resistant vesicle, Euro. Jnl of Applied Mathematics 20 (2009), 479-518. https://doi.org/10.1017/S0956792509990015
B. Eirik, S. Eivind and A. Jørgen, A semi-analytical model for global buckling and postbuckling analysis of stiffened panels, Thin-Walled Structures 42 (2004), 701-717. https://doi.org/10.1016/j.tws.2003.12.006
J. C. Amazigo, B. Budiansky and G. F. Carrier, Asymptotic analyses of the buckling of imperfect columns on nonlinear elastic foundations, Int. J. Solids Structures 6(10) (1970), 1341-1356. https://doi.org/10.1016/0020-7683(70)90067-3
H. Qiang, S. Zhang and G. Yang, The asymptotic solution of a dynamic buckling problem in elastic columns, Applied Mathematics and Mechanics 20(8) (1999), 867-872. https://doi.org/10.1007/BF02452484
A. M. Ette, Dynamic buckling of an imperfect spherical shell under an axial impulse, Int. J. Non-Linear Mech. 32 (1997), 201-209. https://doi.org/10.1016/S0020-7462(96)00051-0
A. M. Ette, On a two-parameter dynamic buckling of a lightly damped spherical cap trapped by a step load, J. Nigerian Math. Soc. 23 (2004), 7-26.
A. M. Ette and J. U. Onwuchekwa, On the static buckling of an externally pressurized finite circular cylindrical shell, Journal of the Nigerian Association of Mathematical Physics 11 (2007), 323-332. https://doi.org/10.4314/jonamp.v11i1.40226
C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers I – Asymptotic Methods and Perturbation Theory, Springer, 1999. https://doi.org/10.1007/978-1-4757-3069-2
B. Budiansky, Dynamic buckling of elastic structures: criteria and estimates, in: Dynamic Stabilities of Structures, G. Herrmann, ed., Pergamon, Oxford, 1967, pp. 83-106. https://doi.org/10.1016/B978-1-4831-9821-7.50010-7
D. Danielson, Dynamic buckling loads of imperfection-sensitive structures from perturbation procedures, AIAA Journal 7 (1969), 1506-1510. https://doi.org/10.2514/3.5423
A. M. Ette, On a lightly damped elastic quadratic model structure modulated by a dynamic periodic load, J. Nigerian Assoc. Math. Phys. 14 (2009), 21-40.
Joy U. Chukwuchekwa and Anthony M. Ette, Asymptotic analysis of an improved quadratic model structure subjected to static loading, J. Nigerian Assoc. Math. Phys. 32 (2015), 237-244.
J. W. Hutchinson and B. Budiansky, Dynamic buckling estimates, AIAA Journal 4(3) (1966), 525-530. https://doi.org/10.2514/3.3468
This work is licensed under a Creative Commons Attribution 4.0 International License.