Some New Classes of General Harmonic-like Variational Inequalities
Abstract
Several new classes of general harmonic-like variational inequalities involving two arbitrary operators are introduced and considered in this paper. Some important cases are discussed, which can be obtained by choosing suitable and appropriate choice of the operators. Projection technique is applied to establish the equivalence between the general harmonic-like variational inequalities and fixed point problems. This alternative formulation is used to discuss the uniqueness of the solution as well as to propose a wide class of proximal point algorithms. Convergence criteria of the proposed methods is considered. Asymptotic stability of the solution is studied using the first order dynamical system associated with variational inequalities. Second order dynamical systems associated with general quasi variational inequalities are applied to suggest some inertial type methods. Some special cases are discussed as applications of the main results. We also show that the change of variable can be used to show that the harmonic-like variational inequalities. Several open problems are indicated for future research work.
References
Al-Said, E. A., & Noor, M. A. (1999). An iterative scheme for generalized mildly nonlinear complementarity problems. Applied Mathematics Letters, 12, 7–11. https://doi.org/10.1016/S0893-9659(99)00071-3
Anderson, G. D., Vamanamurthy, M. K., & Vuorinen, M. (2007). Generalized convexity and inequalities. Journal of Mathematical Analysis and Applications, 335, 1294–1308. https://doi.org/10.1016/j.jmaa.2007.02.016
Ashish, K., Rani, M., & Chugh, R. (2014). Julia sets and Mandelbrot sets in Noor orbit. Applied Mathematics and Computation, 228(1), 615–631. https://doi.org/10.1016/j.amc.2013.11.077
Ashish, Chugh, R., & Rani, M. (2021). Fractals and chaos in Noor orbit: A four-step feedback approach. Lap Lambert Academic Publishing.
Ashish, Cao, J., & Noor, M. A. (2023). Stabilization of fixed points in chaotic maps using Noor orbit with applications in cardiac arrhythmia. Journal of Applied Analysis and Computation, 13(5), 2452–2470. https://doi.org/10.11948/20220350
Al-Azemi, F., & Calin, O. (2015). Asian options with harmonic average. Applied Mathematics and Information Sciences, 9, 1–9.
Chairatsiripong, C., & Thianwan, T. (2022). Novel Noor iterations technique for solving nonlinear equations. AIMS Mathematics, 7(6), 10958–10976. https://doi.org/10.3934/math.2022612
Barbagallo, A., & Lo Bainco, S. G. (2024). A random elastic traffic equilibrium problem via stochastic quasi-variational inequalities. Communications in Nonlinear Science and Numerical Simulation, 131, 107798. https://doi.org/10.1016/j.cnsns.2023.107798
Cho, S. Y., Shahid, A. A., Nazeer, W., & Kang, S. M. (2006). Fixed point results for fractal generation in Noor orbit and s-convexity. SpringerPlus, 5, 1843. https://doi.org/10.1186/s40064-016-3530-5
Chugh, R., Rani, M., & Ashish. (2012). On the convergence of logistic map in Noor orbit. International Journal of Computer Applications, 43(18), 1–5. https://doi.org/10.5120/6200-8739
Cottle, R. W., Pang, J.-S., & Stone, R. E. (2009). The linear complementarity problem. SIAM Publications.
Cristescu, G., & Lupsa, L. (2002). Non-connected convexities and applications. Kluwer Academic Publishers. https://doi.org/10.1007/978-1-4615-0003-2
Cristescu, G., & Mihail, G. (2009). Shape properties of Noor's g-convex sets. In Proceedings of the Twelfth Symposium on Mathematical Applications (pp. 1–13). Timisoara, Romania.
Dupuis, P., & Nagurney, A. (1993). Dynamical systems and variational inequalities. Annals of Operations Research, 44, 7–42. https://doi.org/10.1007/BF02073589
Glowinski, R., Lions, J. L., & Tremolieres, R. (1981). Numerical analysis of variational inequalities. North-Holland.
Glowinski, R., & Le Tallec, P. (1989). Augmented Lagrangian and operator splitting methods in nonlinear mechanics. SIAM. https://doi.org/10.1137/1.9781611970838
He, B., He, X., & Liu, H. X. (2010). Solving a class of constrained 'black-box' inverse variational inequalities. European Journal of Operational Research, 204, 391–401. https://doi.org/10.1016/j.ejor.2009.07.006
Jabeen, S., Mohsin, B. B., Noor, M. A., & Noor, K. I. (2021). Inertial projection methods for solving general quasi-variational inequalities. AIMS Mathematics, 6(2), 1075–1086. https://doi.org/10.3934/math.2021064
Khan, A. G., Noor, M. A., & Noor, K. I. (2015). Dynamical systems for general quasi variational inequalities. Annals of Functional Analysis, 6(1), 193–209. https://doi.org/10.15352/afa/06-1-14
Kinderlehrer, D., & Stampacchia, G. (2000). An introduction to variational inequalities and their applications. SIAM. https://doi.org/10.1137/1.9780898719451
Korpelevich, G. M. (1976). The extragradient method for finding saddle points and other problems. Ekonomika i Matematicheskie Metody, 12, 747–756.
Kwuni, Y. C., Shahid, A. A., Nazeer, W., Butt, S. I., Abbas, M., & Kang, S. M. (2019). Tricorns and multicorns in Noor orbit with s-convexity. IEEE Access, 7. https://doi.org/10.1109/ACCESS.2019.2928796
Lions, J., & Stampacchia, G. (1967). Variational inequalities. Communications on Pure and Applied Mathematics, 20, 493–519. https://doi.org/10.1002/cpa.3160200302
Mijajlovic, N., Milojica, J., & Noor, M. A. (2019). Gradient-type projection methods for quasi variational inequalities. Optimization Letters, 13, 1885–1896. https://doi.org/10.1007/s11590-018-1323-1
Nagurney, A., & Zhang, D. (1996). Projected dynamical systems and variational inequalities with applications. Kluwer Academic Publishers. https://doi.org/10.1007/978-1-4615-2301-7_2
Nammanee, K., Noor, M. A., & Suantai, S. (2006). Convergence criteria of modified Noor iterations with errors for asymptotically nonexpansive mappings. Journal of Mathematical Analysis and Applications, 314, 320–334. https://doi.org/10.1016/j.jmaa.2005.03.094
Natarajan, S. K., & Negi, D. (2024). Green innovations utilizing fractal and power for solar panel optimization. In R. Sharma, G. Rana, & S. Agarwal (Eds.), Green innovations for industrial development and business sustainability (pp. 146–152). CRC Press. https://doi.org/10.1201/9781003458944-10
Negi, D., Saini, A. K., Pandey, N., Wariyal, S. C., & Sharma, R. (2016). An analysis of Julia sets and Noor iterations using a complex Mandelbrot iteration scheme. Preprint.
Niculescu, C. P., & Persson, L. E. (2018). Convex functions and their applications. Springer-Verlag. https://doi.org/10.1007/978-3-319-78337-6_1
Noor, M. A. (1975). On variational inequalities (Doctoral dissertation). Brunel University, London, U.K.
Noor, M. A. (1988). General variational inequalities. Applied Mathematics Letters, 1, 119–121. https://doi.org/10.1016/0893-9659(88)90054-7
Noor, M. A. (1988). Quasi variational inequalities. Applied Mathematics Letters, 1(4), 367–370. https://doi.org/10.1016/0893-9659(88)90152-8
Noor, M. A. (1988). Fixed point approach for complementarity problems. Journal of Mathematical Analysis and Applications, 33, 437–448. https://doi.org/10.1016/0022-247X(88)90413-1
Noor, M. A. (1992). General algorithm for variational inequalities. Journal of Optimization Theory and Applications, 73, 409–413. https://doi.org/10.1007/BF00940189
Noor, M. A. (2000). Variational inequalities for fuzzy mappings (III). Fuzzy Sets and Systems, 110(1), 101–108. https://doi.org/10.1016/S0165-0114(98)00131-6
Noor, M. A. (2000). New approximation schemes for general variational inequalities. Journal of Mathematical Analysis and Applications, 251, 217–230. https://doi.org/10.1006/jmaa.2000.7042
Noor, M. A. (2004). Some developments in general variational inequalities. Applied Mathematics and Computation, 152, 199–277. https://doi.org/10.1016/S0096-3003(03)00558-7
Noor, M. A. (2009). Extended general variational inequalities. Applied Mathematics Letters, 22, 182–185. https://doi.org/10.1016/j.aml.2008.03.007
Noor, M. A. (2008). Differentiable non-convex functions and general variational inequalities. Applied Mathematics and Computation, 199(2), 623–630. https://doi.org/10.1016/j.amc.2007.10.023
Noor, M. A., & Noor, K. I. (2022). Some novel aspects of quasi variational inequalities. Earthline Journal of Mathematical Sciences, 10(1), 1–66. https://doi.org/10.34198/ejms.10122.166
Noor, M. A., & Noor, K. I. (2016). Harmonic variational inequalities. Applied Mathematics & Information Sciences, 10(5), 1811–1814. https://doi.org/10.18576/amis/100522
Noor, M. A., & Noor, K. I. (2022). Dynamical system technique for solving quasi variational inequalities. U.P.B. Scientific Bulletin, Series A, 84(4), 55–66.
Noor, M. A., & Noor, K. I. (2016). Some implicit schemes for harmonic variational inequalities. International Journal of Analysis and Applications, 12(1), 10–14.
Noor, M. A., & Noor, K. I. (2023). Some new classes of harmonic hemivariational inequalities. Earthline Journal of Mathematical Sciences, 13(2), 473–495. https://doi.org/10.34198/ejms.13223.473495
Noor, M. A., & Noor, K. I. (2024). Harmonic directional variational inequalities. U.P.B. Scientific Bulletin, Series A, 86(2), 13–24.
Noor, M. A., & Noor, K. I. (2025). Auxiliary principle technique for solving trifunction harmonic variational inequalities. RAD Matematicki Znanosti, 29(564), 261–281. https://doi.org/10.21857/yrvgqt31w9
Noor, M. A., & Noor, K. I. (2025). New iterative methods for solving general harmonic-like variational inequalities. International Journal of Value Engineering, 2(1). https://doi.org/10.59429/ijve.v2i1.9171
Noor, M. A., & Noor, K. I. (2004). Some novel aspects and applications of Noor iterations and Noor orbits. Journal of Advanced Mathematical Studies, 17(3), 276–284.
Noor, M. A., Noor, K. I., & Iftikhar, S. (2017). Some characterizations of harmonic convex functions. International Journal of Analysis and Applications, 15(2), 179–187.
Noor, M. A., Noor, K. I., & Kankam, K. (2025). On a new generalization of the Lax-Milgram Lemma. Earthline Journal of Mathematical Sciences, 15(1), 23–34. https://doi.org/10.34198/ejms.15125.023034
Noor, M. A., Noor, K. I., & Bnouhachem, A. (2021). Some new iterative methods for variational inequalities. Canadian Journal of Applied Mathematics, 3(1), 1–17.
Noor, M. A., Noor, K. I., & Rassias, M. T. (2020). New trends in general variational inequalities. Acta Applicandae Mathematicae, 170(1), 981–1046. https://doi.org/10.1007/s10440-020-00366-2
Noor, M. A., Noor, K. I., & Rassias, M. T. (2025). General variational inequalities and optimization. In P. M. Pardalos & T. M. Rassias (Eds.), Geometry and non-convex optimization (Springer Optimization and Its Applications, 223). Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-031-87057-6_14
Noor, M. A., Noor, K. I., & Rassias, T. M. (1993). Some aspects of variational inequalities. Journal of Computational and Applied Mathematics, 47, 285–312. https://doi.org/10.1016/0377-0427(93)90058-J
Noor, M. A., & Oettli, W. (1994). On general nonlinear complementarity problems and quasi equilibria. Le Matematiche, 49, 313–331.
Paimsang, S., Yambangwai, D., & Thianwan, T. (2024). A novel Noor iterative method of operators with property (E) as concerns convex programming applicable in signal recovery and polynomiography. Mathematical Methods in the Applied Sciences, 1–18. https://doi.org/10.1002/mma.10083
Patriksson, M. (1998). Nonlinear programming and variational inequalities: A unified approach. Kluwer Academic Publishers. https://doi.org/10.1007/978-1-4757-2991-7_3
Phuengrattana, W., & Suantai, S. (2011). On the rate of convergence of Mann, Ishikawa, Noor and SP-iterations for continuous functions on an arbitrary interval. Journal of Computational and Applied Mathematics, 235(9), 3006–3014. https://doi.org/10.1016/j.cam.2010.12.022
Rattanaseeha, K., Imnang, S., Inkrong, P., & Thianwan, T. (2023). Novel Noor iterative methods for mixed type asymptotically nonexpansive mappings from the perspective of convex programming in hyperbolic spaces. International Journal of Innovative Computing, Information and Control, 19(6), 1717–1734.
Shi, P. (1991). Equivalence of variational inequalities with Wiener-Hopf equations. Proceedings of the American Mathematical Society, 111, 339–346. https://doi.org/10.1090/S0002-9939-1991-1037224-3
Stampacchia, G. (1964). Formes bilineaires coercitives sur les ensembles convexes. Comptes Rendus de l’Académie des Sciences Paris, 258, 4413–4416.
Suantai, S., Noor, M. A., Kankam, K., & Cholamjiak, P. (2021). Novel forward-backward algorithms for optimization and applications to compressive sensing and image inpainting. Advances in Difference Equations, 2021, Article ID 265. https://doi.org/10.1186/s13662-021-03422-9
Xia, Y. S., & Wang, J. (2000). On the stability of globally projected dynamical systems. Journal of Optimization Theory and Applications, 106, 129–150. https://doi.org/10.1023/A:1004611224835
Yadav, A., & Jha, K. (2016). Parrondo's paradox in the Noor logistic map. International Journal of Advanced Research in Engineering and Technology, 7(5), 1–6. https://doi.org/10.9790/3013-06720105
This work is licensed under a Creative Commons Attribution 4.0 International License.