A Subclass of Harmonic Multivalent Functions Associated with Differential Operator

  • Kirti Pal Department of Mathematics, Brahmananad P.G. College (affiliated with Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, India), The Mall, Kanpur 208011, Uttar Pradesh, India
  • A. L. Pathak Department of Mathematics, Brahmananad P.G. College (affiliated with Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, India), The Mall, Kanpur 208011, Uttar Pradesh, India
Keywords: harmonic multivalent functions, harmonic functions, univalent functions, differential operator

Abstract

  In the present paper, we propose and study a new subclass of harmonic multivalent  functions in the open unit disc $ U=\{z:z\in \mathbb{C},|z|<1\},$ which is characterized by its association with a special differential operator. This investigation focuses on establishing several fundamental properties of the introduced subclass including coefficient bounds, convex combination criteria, convolution conditions and the characterization of its extreme points.

References

Ahuja, O. P., & Jahangiri, J. M. (2001). Multivalent harmonic starlike functions. Annales Universitatis Mariae Curie-Skłodowska, Sectio A, 55, 1–13.

Bernardi, S. D. (1969). Convex and starlike univalent functions. Transactions of the American Mathematical Society, 135, 429–446. https://doi.org/10.2307/1995025

Bobalade, D. D., Sangle, N. D., & Yadav, S. N. (2023). Subclass of harmonic univalent functions associated with the differential operator. Southeast Asian Bulletin of Mathematics, 47(2), 191–203.

Clunie, J., & Sheil-Small, T. (1984). Harmonic univalent functions. Annales Fennici Mathematici, 9(1), 3–25. https://doi.org/10.5186/aasfm.1984.0905

El-Ashwah, R. M., & Aouf, M. K. (2010). New classes of p-valent harmonic functions. Bulletin of Mathematical Analysis and Applications, 2(3), 53–64.

Ezhilarasi, R., Sudharsan, T. V., & Subramanian, K. G. (2014). A class of harmonic multivalent functions defined by an integral operator. General Mathematics Notes, 22(1), 17–30.

Jahangiri, J. M. (1999). Harmonic functions starlike in the unit disk. Journal of Mathematical Analysis and Applications, 235(2), 470–477. https://doi.org/10.1006/jmaa.1999.6377

Makinde, D. O. (2016). On a new differential operator. Theoretical Mathematics & Applications, 6(4), 71–74.

Makinde, D. O., & Afolabi, A. O. (2012). On a subclass of harmonic univalent functions. Transnational Journal of Science and Technology, 2(2), 1–11.

Seoudy, T. (2014). On a linear combination of classes of harmonic p-valent functions defined by certain modified operator. Bulletin of the Iranian Mathematical Society, 40(6), 1539–1551.

Sharma, R. B., & Ravinder, B. (2018). On a subclass of harmonic univalent functions. Journal of Physics: Conference Series, 1000, 012115. https://doi.org/10.1088/1742-6596/1000/1/012115

Yasar, E., & Yalçın, S. (2012). Properties of a subclass of multivalent harmonic functions defined by a linear operator. General Mathematics Notes, 13(1), 10–20.

Published
2025-10-22
How to Cite
Pal, K., & Pathak, A. L. (2025). A Subclass of Harmonic Multivalent Functions Associated with Differential Operator. Earthline Journal of Mathematical Sciences, 15(6), 1151-1164. https://doi.org/10.34198/ejms.15625.11511164
Section
Articles